Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 125(3): 495-507, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31730195

RESUMEN

BACKGROUND AND AIMS: Inferring the evolutionary relationships of species and their boundaries is critical in order to understand patterns of diversification and their historical drivers. Despite Abies (Pinaceae) being the second most diverse group of conifers, the evolutionary history of Circum-Mediterranean firs (CMFs) remains under debate. METHODS: We used restriction site-associated DNA sequencing (RAD-seq) on all proposed CMF taxa to investigate their phylogenetic relationships and taxonomic status. KEY RESULTS: Based on thousands of genome-wide single nucleotide polymorphisms (SNPs), we present here the first formal test of species delimitation, and the first fully resolved, complete species tree for CMFs. We discovered that all previously recognized taxa in the Mediterranean should be treated as independent species, with the exception of Abies tazaotana and Abies marocana. An unexpectedly early pulse of speciation in the Oligocene-Miocene boundary is here documented for the group, pre-dating previous hypotheses by millions of years, revealing a complex evolutionary history encompassing both ancient and recent gene flow between distant lineages. CONCLUSIONS: Our phylogenomic results contribute to shed light on conifers' diversification. Our efforts to resolve the CMF phylogenetic relationships help refine their taxonomy and our knowledge of their evolution.


Asunto(s)
Abies , Secuencia de Bases , Flujo Génico , Filogenia , Análisis de Secuencia de ADN
2.
New Phytol ; 206(1): 448-458, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25401776

RESUMEN

Hybridization is known to have a creative role in plant evolution. However, it can also have negative effects on parental species. Onopordum is a large genus whose species frequently hybridize. In the Southwest Iberian Peninsula, the rare O. hinojense co-occurs with the widely distributed O. nervosum, and hybrids between these two taxa have been described as O. × onubense. In this study we determine the extinction risk in a hybrid zone, both for hybrids and parentals, using analyses of morphological and cytogenetic traits as well as genetic markers and demographic models. To investigate the introgression process we used amplified fragment length polymorphism (AFLP) markers, Bayesian analyses and genome scan methods. Morphology, genome size and molecular markers confirmed homoploid hybridization and also indicated unidirectional backcrossing of F1 hybrids with O. nervosum, which is likely to swamp O. hinojense, the parental with lower pollen size and a very low fruit set (8%). Genome scan methods revealed several loci significantly deviating from neutrality. Finally, our demographic modeling indicated that the higher fitness of O. nervosum threats the survival of O. hinojense by demographic swamping. Our study provides strong new evidence for a scenario of rapid extinction by unidirectional introgression and demographic swamping. The multifaceted approach used here sheds new light on the role of introgression in plant extinctions.


Asunto(s)
Variación Genética , Hibridación Genética , Onopordum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , Conservación de los Recursos Naturales , Demografía , Marcadores Genéticos , Genética de Población , Fenotipo , Polimorfismo Genético , Especificidad de la Especie
3.
Mol Phylogenet Evol ; 53(1): 13-22, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19540350

RESUMEN

We used Amplified Fragment Length Polymorphism markers (AFLP) and breeding system studies to investigate the population structure and reproductive biology of Hypochaeris angustifolia (Asteraceae: Cichorieae). This species is endemic to altiplanos of the Atlas Mountains (Morocco) where it occurs in scattered populations, and it is the sister species to c. 40 species of this genus in South America. PCoA, NJ, and Bayesian clustering, revealed that the populations are very isolated whilst AFLP parameters show that almost all populations have marked genetic divergence. We contend that these features are more in accord with a vicariance origin for the scattered populations of H. angustifolia, rather than establishment by long-distance dispersal. The breeding system studies revealed that H. angustifolia is a self-incompatible species, with low fecundity in natural and in experimental crosses, probably due to a low frequency of compatible phenotypes within and between the populations.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Asteraceae/genética , Genética de Población , Asteraceae/clasificación , ADN de Plantas/genética , Evolución Molecular , Fertilidad/genética , Variación Genética , Marruecos , Análisis de Secuencia de ADN
4.
Plant Methods ; 10: 40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25926861

RESUMEN

BACKGROUND: In spite of a large diversity of approaches to investigate loci under selection from a population genetic perspective, very few programs have been specifically designed to date to test selection in hybrids using dominant markers. In addition, simulators of dominant markers are very scarce and they do not usually take into account hybridization. RESULTS: Here, we present a new, multifunctional, R package for dominant genetic markers, AFLPsim. This package can simulate dominant markers in hybridizing populations and implements genome scan methods for detecting outlier dominant loci in hybrids. In addition, it includes tools for further manipulating the results, plotting them and other tasks. We describe and tabulate the major functions implemented in AFLPsim. In addition, we provide some demonstration of its use and we perform a comparative study with other software. Finally, we conclude by briefly describing the input and output formats. CONCLUSIONS: The R package AFLPsim application provides several useful tools in the context of hybridization studies. It can simulate dominant markers in hybridizing populations and predict their demographic evolution. In addition, we implement a new genome scan method for detecting outlier dominant loci in hybrids, which shows a rather high sensitivity and is very conservative in comparison with Gagnaire et al.'s, Bayescan and introgress. The application is downloadable at http://cran.r-project.org/web/packages/AFLPsim/.

5.
Am J Bot ; 93(2): 234-44, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21646184

RESUMEN

We studied the relationships between self-incompatibility mechanisms and floral parameters in the genus Hypochaeris L. sect. Hypochaeris (consisting of H. glabra, H. radicata, H. arachnoidea, and H. salzmanniana). We assessed at intra- and interspecific levels (1) the self-incompatibility (SI) mechanism and its distribution among populations, (2) the relationship between SI and floral parameters, and (3) the relationship of SI to reproductive success. Hypochaeris salzmanniana is semi-incompatible, H. glabra is self-compatible, and H. arachnoidea and H. radicata are self-incompatible. Floral parameters differed among populations of H. salzmanniana: plants in self-compatible populations had fewer flowers per head, a smaller head diameter on the flower, and a shorter period of anthesis than self-incompatible populations. We also detected this pattern within a semi-compatible population of H. salzmanniana, and these differences were also found between species with different breeding mechanisms. Fruit to flower ratio in natural populations was generally high (>60%) in all species, regardless of breeding system. It is hypothesized that self-compatibility may have arisen through loss of allelic diversity at the S locus due to bottleneck events and genetic drift.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA