Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Eukaryot Cell ; 13(11): 1411-20, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25217460

RESUMEN

The septins are a family of GTP-binding proteins that form cytoskeletal filaments. Septins are highly conserved and evolutionarily ancient but are absent from land plants. The synthetic plant cytokinin forchlorfenuron (FCF) was shown previously to inhibit budding yeast cell division and induce ectopic septin structures (M. Iwase, S. Okada, T. Oguchi, and A. Toh-e, Genes Genet. Syst. 79:199-206, 2004, http://dx.doi.org/10.1266/ggs.79.199). Subsequent studies in a wide range of eukaryotes have concluded that FCF exclusively inhibits septin function, yet the mechanism of FCF action in nonplant cells remains poorly understood. Here, we report that the cellular effects of FCF are far more complex than previously described. The reported growth arrest of budding yeast cells treated with 1 mM FCF partly reflects sensitization caused by a bud4 mutation present in the W303 strain background. In wild-type (BUD4(+)) budding yeast, growth was inhibited at FCF concentrations that had no detectable effect on septin structure or function. Moreover, FCF severely inhibited the proliferation of fission yeast cells, in which septin function is nonessential. FCF induced fragmentation of budding yeast mitochondrial reticula and the loss of mitochondrial membrane potential. Mitochondria also fragmented in cultured mammalian cells treated with concentrations of FCF that previously were assumed to target septins only. Finally, FCF potently inhibited ciliation and motility and induced mitochondrial disorganization in Tetrahymena thermophila without apparent alterations in septin structure. None of these effects was consistent with the inhibition of septin function. Our findings point to nonseptin targets as major concerns when using FCF.


Asunto(s)
Potencial de la Membrana Mitocondrial/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Saccharomyces cerevisiae/crecimiento & desarrollo , Schizosaccharomyces/crecimiento & desarrollo , Septinas/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Proteínas de Unión al GTP/genética , Humanos , Hifa/crecimiento & desarrollo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas de Saccharomyces cerevisiae/genética , Tetrahymena thermophila/efectos de los fármacos , Tetrahymena thermophila/crecimiento & desarrollo
2.
Proc Natl Acad Sci U S A ; 105(24): 8274-9, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18550837

RESUMEN

Mitotic yeast cells express five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7). Only Shs1 is nonessential. The four essential septins form a complex containing two copies of each, but their arrangement was not known. Single-particle analysis by EM confirmed that the heterooligomer is octameric and revealed that the subunits are arrayed in a linear rod. Identity of each subunit was determined by examining complexes lacking a given septin, by antibody decoration, and by fusion to marker proteins (GFP or maltose binding protein). The rod has the order Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and, hence, lacks polarity. At low ionic strength, rods assemble end-to-end to form filaments but not when Cdc11 is absent or its N terminus is altered. Filaments invariably pair into long parallel "railroad tracks." Lateral association seems to be mediated by heterotetrameric coiled coils between the paired C-terminal extensions of Cdc3 and Cdc12 projecting orthogonally from each filament. Shs1 may be able to replace Cdc11 at the end of the rod. Our findings provide insights into the molecular mechanisms underlying the function and regulation of cellular septin structures.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopía Electrónica , Polímeros/química , Polímeros/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33284321

RESUMEN

Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.


Asunto(s)
Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Transferasas Intramoleculares/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxiesteroles/metabolismo , Transducción de Señal , Esteroles/metabolismo , Animales , Microambiente Celular , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ratones , Células 3T3 NIH
5.
Biochemistry ; 48(42): 10066-77, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19754159

RESUMEN

Chlorpromazine (CPZ), a potent nicotinic acetylcholine receptor (nAChR) noncompetitive antagonist, binds with higher affinity in the ion channel in the desensitized state than in the closed channel state and with low affinity to additional sites in nAChR-rich membranes. For nAChR equilibrated with agonist, we confirm previous reports that [(3)H]CPZ occupies a site near the cytoplasmic end of the M2 ion channel domain, photolabeling positions M2-2, M2-6, and/or M2-9 in each subunit. We find that [(3)H]CPZ also binds at the extracellular end of the channel, photolabeling amino acids at positions M2-16 (alpha,gamma), M2-17 (alpha,beta,delta), and M2-20 (alpha,beta,delta). The photolabeling at the cytoplasmic end of the channel is fully inhibitable by phencyclidine or proadifen, whereas neither drug inhibits [(3)H]CPZ photolabeling at the extracellular end, establishing that positively charged drugs can bind simultaneously at the cytoplasmic and extracellular ends of the ion channel. [(3)H]CPZ photolabeling is not detected in the transmembrane domain outside the ion channel, but it photolabels alphaMet-386 and alphaSer-393 in the cytoplasmic alphaMA helix. In the nAChR equilibrated with alpha-bungarotoxin to stabilize the nAChR in a closed state, [(3)H]CPZ photolabels amino acids at M2-5 (alpha), M2-6 (alpha,beta,delta), and M2-9 (beta,delta), with no labeling at M2-2. These results provide novel information about the modes of drug binding within the nAChR ion channel and indicate that within the nAChR transmembrane domain, the binding of cationic aromatic amine antagonists can be restricted to the ion channel domain, in contrast to the uncharged, allosteric potentiators and inhibitors that also bind within the delta subunit helix bundle and at subunit interfaces.


Asunto(s)
Clorpromazina/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Animales , Sitios de Unión , Clorpromazina/metabolismo , Antagonistas Nicotínicos/metabolismo , Etiquetas de Fotoafinidad
6.
PLoS One ; 14(3): e0212735, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30865666

RESUMEN

Due to low labeling efficiency and structural heterogeneity in fluorescence-based single-molecule localization microscopy (SMLM), image alignment and quantitative analysis is often required to make accurate conclusions on the spatial relationships between proteins. Cryo-electron microscopy (EM) image alignment procedures have been applied to average structures taken with super-resolution microscopy. However, unlike cryo-EM, the much larger cellular structures analyzed by super-resolution microscopy are often heterogeneous, resulting in misalignment. And the light-microscopy image library is much smaller, which makes classification challenging. To overcome these two challenges, we developed a method to deform semi-flexible ring-shaped structures and then align the 3D structures without classification. These algorithms can register semi-flexible structures with an accuracy of several nanometers in short computation time and with greatly reduced memory requirements. We demonstrated our methods by aligning experimental Stochastic Optical Reconstruction Microscopy (STORM) images of ciliary distal appendages and simulated structures. Symmetries, dimensions, and locations of protein complexes in 3D are revealed by the alignment and averaging for heterogeneous, tilted, and under-labeled structures.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Imagen Individual de Molécula
7.
Curr Biol ; 28(8): R421-R434, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689227

RESUMEN

Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.


Asunto(s)
Cilios/metabolismo , Cilios/fisiología , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Movimiento Celular/fisiología , Cilios/ultraestructura , Humanos , Proteínas de la Membrana/metabolismo , Microtúbulos/fisiología , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología
8.
Nat Cell Biol ; 19(10): 1178-1188, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846093

RESUMEN

Ciliopathies, including nephronophthisis (NPHP), Meckel syndrome (MKS) and Joubert syndrome (JBTS), can be caused by mutations affecting components of the transition zone, a domain near the base of the cilium that controls the protein composition of its membrane. We defined the three-dimensional arrangement of key proteins in the transition zone using two-colour stochastic optical reconstruction microscopy (STORM). NPHP and MKS complex components form nested rings comprised of nine-fold doublets. JBTS-associated mutations in RPGRIP1L or TCTN2 displace certain transition-zone proteins. Diverse ciliary proteins accumulate at the transition zone in wild-type cells, suggesting that the transition zone is a waypoint for proteins entering and exiting the cilium. JBTS-associated mutations in RPGRIP1L disrupt SMO accumulation at the transition zone and the ciliary localization of SMO. We propose that the disruption of transition-zone architecture in JBTS leads to a failure of SMO to accumulate at the transition zone and cilium, disrupting developmental signalling in JBTS.


Asunto(s)
Anomalías Múltiples/patología , Cerebelo/anomalías , Cilios/patología , Ciliopatías/patología , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/patología , Microscopía Fluorescente/métodos , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Cerebelo/metabolismo , Cerebelo/patología , Niño , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Proteínas del Citoesqueleto , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Mutación , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenotipo , Retina/metabolismo , Retina/patología , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Procesos Estocásticos , Adulto Joven
10.
Dev Cell ; 43(6): 744-762.e11, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257953

RESUMEN

Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Cilios/genética , Cilios/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Unión a Calmodulina/genética , Técnicas de Cultivo de Célula , Coanoflagelados/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mutación , Orgánulos/metabolismo , Filogenia , Proteómica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Anémonas de Mar/metabolismo , Erizos de Mar/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Xenopus laevis/metabolismo , Pez Cebra/metabolismo
11.
Cilia ; 5: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27114821

RESUMEN

The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages (also known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inherited during mitosis and which is comprised of  nine triplet microtubules arranged in a cylinder. Like all ciliated organisms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contributions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas those of motile multiciliated cells are not. The last few years have seen the identification of many components of the basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.

12.
J Cell Biol ; 212(5): 515-29, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26929450

RESUMEN

Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28-Spr3-Cdc3-Cdc10-Cdc10-Cdc3-Spr3-Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3-capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties.


Asunto(s)
Membrana Celular/metabolismo , Meiosis , Mitosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Septinas/química , Septinas/metabolismo , Sitios de Unión , Membrana Celular/química , Mutación , Fenotipo , Septinas/genética
13.
Mol Biol Cell ; 27(14): 2213-33, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27193302

RESUMEN

Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611-950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611-950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379-1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Citoesqueleto/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Genes cdc , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/enzimología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Septinas/genética
14.
Dev Cell ; 34(4): 400-409, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26305592

RESUMEN

Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling.


Asunto(s)
Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Animales , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas , Transporte de Proteínas , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Mol Biol Cell ; 23(3): 423-32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22160597

RESUMEN

Septins are conserved GTP-binding proteins involved in membrane compartmentalization and remodeling. In budding yeast, five mitotic septins localize at the bud neck, where the plasma membrane is enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2)). We previously established the subunit organization within purified yeast septin complexes and how these hetero-octamers polymerize into filaments in solution and on PtdIns4,5P(2)-containing lipid monolayers. How septin ultrastructure in vitro relates to the septin-containing filaments observed at the neck in fixed cells by thin-section electron microscopy was unclear. A morphological description of these filaments in the crowded space of the cell is challenging, given their small cross section. To examine septin organization in situ, sections of dividing yeast cells were analyzed by electron tomography of freeze-substituted cells, as well as by cryo-electron tomography. We found networks of filaments both perpendicular and parallel to the mother-bud axis that resemble septin arrays on lipid monolayers, displaying a repeat pattern that mirrors the molecular dimensions of the corresponding septin preparations in vitro. Thus these in situ structures most likely represent septin filaments. In viable mutants lacking a single septin, in situ filaments are still present, although more disordered, consistent with other evidence that the in vivo function of septins requires filament formation.


Asunto(s)
Saccharomyces cerevisiae/química , Septinas/química , Citoesqueleto/química , Citoesqueleto/ultraestructura , Imagenología Tridimensional , Mutación , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Septinas/ultraestructura
16.
Dev Cell ; 20(4): 540-9, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21497764

RESUMEN

Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide because the now-exposed subunits (Cdc3 or Cdc12, respectively) retain an ability to homodimerize via their so-called G interface, thereby allowing for filament assembly. In such cdc10Δ and cdc11Δ cells, the remaining septins, like wild-type complexes, localize to the cortex at the bud neck and compartmentalize nonseptin factors, consistent with a diffusion barrier composed of continuous filaments in intimate contact with the plasma membrane. Conversely, Cdc10 or Cdc11 mutants that cannot self-associate, but "cap" Cdc3 or Cdc12, respectively, prevent filament formation, block cortical localization, and kill cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Genes Esenciales , Proteínas Recombinantes/metabolismo
17.
J Cell Biol ; 195(6): 993-1004, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22144691

RESUMEN

Septins are conserved guanosine triphosphate-binding cytoskeletal proteins involved in membrane remodeling. In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1), which are essential for cytokinesis, transition during bud growth from a patch to a collar, which splits into two rings in cytokinesis and is disassembled before the next cell cycle. Cdc3, Cdc10, Cdc11, and Cdc12 form an apolar octameric rod with Cdc11 at each tip, which polymerizes into straight paired filaments. We show that Shs1 substitutes for Cdc11, resulting in octameric rods that do not polymerize into filaments but associate laterally, forming curved bundles that close into rings. In vivo, half of shs1Δ mutant cells exhibit incomplete collars and disrupted neck filaments. Importantly, different phosphomimetic mutations in Shs1 can either prevent ring formation or promote formation of a gauzelike meshwork. These results show that a single alternative terminal subunit is sufficient to confer a distinctive higher-order septin ultrastructure that can be further regulated by phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
J Mol Biol ; 404(4): 711-31, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20951708

RESUMEN

Septins are a conserved family of GTP-binding proteins that assemble into symmetric linear heterooligomeric complexes, which in turn are able to polymerize into apolar filaments and higher-order structures. In budding yeast (Saccharomyces cerevisiae) and other eukaryotes, proper septin organization is essential for processes that involve membrane remodeling, such as the execution of cytokinesis. In yeast, four septin subunits form a Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 heterooctameric rod that polymerizes into filaments thought to form a collar around the bud neck in close contact with the inner surface of the plasma membrane. To explore septin-membrane interactions, we examined the effect of lipid monolayers on septin organization at the ultrastructural level using electron microscopy. Using this methodology, we have acquired new insights into the potential effect of septin-membrane interactions on filament assembly and, more specifically, on the role of phosphoinositides. Our studies demonstrate that budding yeast septins interact specifically with phosphatidylinositol-4,5-bisphosphate (PIP2) and indicate that the N terminus of Cdc10 makes a major contribution to the interaction of septin filaments with PIP2. Furthermore, we found that the presence of PIP2 promotes filament polymerization and organization on monolayers, even under conditions that prevent filament formation in solution or for mutants that prevent filament formation in solution. In the extreme case of septin complexes lacking the normally terminal subunit Cdc11 or the normally central Cdc10 doublet, the combination of the PIP2-containing monolayer and nucleotide permitted filament formation in vitro via atypical Cdc12-Cdc12 and Cdc3-Cdc3 interactions, respectively.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Complejos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Proteínas del Citoesqueleto/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Septinas/ultraestructura
19.
J Biol Chem ; 283(32): 22051-62, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18524766

RESUMEN

Etomidate, one of the most potent general anesthetics used clinically, acts at micromolar concentrations as an anesthetic and positive allosteric modulator of gamma-aminobutyric acid responses, whereas it inhibits muscle-type nicotinic acetylcholine receptors (nAChRs) at concentrations above 10 microm. We report here that TDBzl-etomidate, a photoreactive etomidate analog, acts as a positive allosteric nAChR modulator rather than an inhibitor, and we identify its binding sites by photoaffinity labeling. TDBzl-etomidate (>10 microm) increased the submaximal response to acetylcholine (10 microm) with a 2.5-fold increase at 60 microm. At higher concentrations, it inhibited the binding of the noncompetitive antagonists [(3)H]tetracaine and [(3)H]phencyclidine to Torpedo nAChR-rich membranes (IC(50) values of 0. 8 mm). nAChR-rich membranes were photolabeled with [(3)H]TDBzl-etomidate, and labeled amino acids were identified by Edman degradation. For nAChRs photolabeled in the absence of agonist (resting state), there was tetracaine-inhibitable photolabeling of amino acids in the ion channel at positions M2-9 (deltaLeu-265) and M2-13 (alphaVal-255 and deltaVal-269), whereas labeling of alphaM2-10 (alphaSer-252) was not inhibited by tetracaine but was enhanced 10-fold by proadifen or phencyclidine. In addition, there was labeling in gammaM3 (gammaMet-299), a residue that contributes to the same pocket in the nAChR structure as alphaM2-10. The pharmacological specificity of labeling of residues, together with their locations in the nAChR structure, indicate that TDBzl-etomidate binds at two distinct sites: one within the lumen of the ion channel (labeling of M2-9 and -13), an inhibitory site, and another at the interface between the alpha and gamma subunits (labeling of alphaM2-10 and gammaMet-299) likely to be a site for positive allosteric modulation.


Asunto(s)
Diazometano/análogos & derivados , Etomidato/análogos & derivados , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Sitios de Unión , Diazometano/química , Diazometano/metabolismo , Diazometano/farmacología , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Torpedo
20.
Biochemistry ; 46(36): 10296-307, 2007 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-17685589

RESUMEN

Interactions of benzophenone (BP) with the Torpedo nicotinic acetylcholine receptor (nAChR) were characterized by electrophysiological analyses, radioligand binding assays, and photolabeling of nAChR-rich membranes with [3H]BP to identify the amino acids contributing to its binding sites. BP acted as a low potency noncompetitive antagonist, reversibly inhibiting the ACh responses of nAChRs expressed in Xenopus oocytes (IC50 = 600 microM) and the binding of the noncompetitive antagonist [3H]tetracaine to nAChR-rich membranes (IC50 = 150 microM). UV irradiation at 365 nm resulted in covalent incorporation of [3H]BP into the nAChR subunits (delta > alpha approximately beta > gamma), with photoincorporation limited to the nAChR transmembrane domain. Comparison of nAChR photolabeling in the closed state (absence of agonist) and desensitized state (equilibrated with agonist) revealed selective desensitized state labeling in the delta subunit of deltaPhe-232 in deltaM1 and deltaPro-286/deltaIle-288 near the beginning of deltaM3 that are within a pocket at the interface between the transmembrane and extracellular domains. There was labeling in the closed state within the ion channel at position M2-13 (alphaVal-255, betaVal-261, and deltaVal-269) that was reduced by 90% upon desensitization and labeling in the transmembrane M3 helices of the beta and gamma subunits (betaMet-285, betaMet-288, and gammaMet-291) that was reduced by 50-80% in the desensitized state. Labeling at the lipid interface (alphaMet-415 in alphaM4) was unaffected by agonist. These results provide a further definition of the regions in the nAChR transmembrane domain that differ in structure between the closed and desensitized states.


Asunto(s)
Benzofenonas/metabolismo , Etiquetas de Fotoafinidad/análisis , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Tritio/metabolismo , Animales , Benzofenonas/farmacología , Sitios de Unión , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Fragmentos de Péptidos/metabolismo , Etiquetas de Fotoafinidad/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA