Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Am Chem Soc ; 145(30): 16924-16937, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466996

RESUMEN

The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.


Asunto(s)
Myxococcales , Péptidos/química , Procesamiento Proteico-Postraduccional
2.
J Nat Prod ; 86(4): 915-923, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37011180

RESUMEN

Myxobacteria represent an underinvestigated source of chemically diverse and biologically active secondary metabolites. Here, we report the discovery, isolation, structure elucidation, and biological evaluation of two new bacterial sterols, termed nannosterols A and B (1, 2), from the terrestrial myxobacterium Nannocystis sp. (MNa10993). Nannosterols feature a cholestanol core with numerous modifications including a secondary alcohol at position C-15, a terminal vicinal diol side chain at C-24-C-25 (1, 2), and a hydroxy group at the angular methyl group at C-18 (2), which is unprecedented for bacterial sterols. Another rare chemical feature of bacterial triterpenoids is a ketone group at position C-7, which is also displayed by 1 and 2. The combined exploration based on myxobacterial high-resolution secondary metabolome data and genomic in silico investigations exposed the nannosterols as frequently produced sterols within the myxobacterial suborder of Nannocystineae. The discovery of the nannosterols provides insights into the biosynthesis of these new myxobacterial sterols, with implications in understanding the evolution of sterol production by prokaryotes.


Asunto(s)
Myxococcales , Fitosteroles , Esteroles , Myxococcales/química
3.
Chemistry ; 28(10): e202104484, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990513

RESUMEN

Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition opens the possibility for their medicinal chemistry optimization towards selective inhibitors.


Asunto(s)
Antivirales , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Myxococcales/química , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología
4.
Pain Med ; 23(9): 1570-1581, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35148407

RESUMEN

OBJECTIVE: Respiratory-gated Auricular Vagal Afferent Nerve stimulation (RAVANS) is a safe nonpharmacological approach to managing chronic pain. The purpose of the current study was to examine (1) the feasibility and acceptability of RAVANS, combined with mindful meditation (MM) for chronic low back pain (CLBP), (2) the potential synergy of MM+RAVANS on improving pain, and (3) possible moderators of the influence of MM+RAVANS on pain. DESIGN: Pilot feasibility and acceptability study. SETTING: Pain management center at large academic medical center. SUBJECTS: Nineteen adults with CLBP and previous MM training. METHODS: Participants attended two sessions during which they completed quantitative sensory testing (QST), rated pain severity, and completed a MM+stimulation session. Participants received RAVANS during one visit and sham stimulation during the other, randomized in order. Following intervention, participants repeated QST. RESULTS: MM+RAVANS was well tolerated, acceptable, and feasible to provide relief for CLBP. Both MM+stimulation sessions resulted in improved back pain severity, punctate pain ratings, and pressure pain threshold. Individuals with greater negative affect showed greater back pain improvement from MM+RAVANS while those with greater mindfulness showed greater back pain improvement from MM+sham. CONCLUSIONS: Results suggest that for CLBP patients with prior MM training, the analgesic effects of MM may have overshadowed effects of RAVANS given the brief single session MM+RAVANS intervention. However, those with greater negative affect may benefit from combined MM+RAVANS.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Meditación , Atención Plena , Estimulación del Nervio Vago , Adulto , Dolor Crónico/terapia , Humanos , Dolor de la Región Lumbar/terapia , Meditación/métodos , Atención Plena/métodos , Proyectos Piloto , Estimulación del Nervio Vago/métodos
5.
Mar Drugs ; 20(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35049927

RESUMEN

Marine myxobacteria present a virtually unexploited reservoir for the discovery of natural products with diverse biological functions and novel chemical scaffolds. We report here the isolation and structure elucidation of eight new deoxyenhygrolides (1-8) from the marine myxobacterium Plesiocystis pacifica DSM 14875T. The herein described deoxyenhygrolides C-J (1-8) feature a butenolide core with an ethyl residue at C-3 of the γ-lactone in contrast to the previously described derivatives, deoxyenhygrolides A and B, which feature an isobutyl residue at this position. The butenolide core is 2,4-substituted with a benzyl (1, 2 and 7), benzoyl (3 and 4) or benzyl alcohol (5, 6 and 8) moiety in the 2-position and a benzylidene (1-6) or benzylic hemiketal (7 and 8) in the 4-position. The description of these new deoxyenhygrolide derivatives, alongside genomic in silico investigation regarding putative biosynthetic genes, provides some new puzzle pieces on how this natural product class might be formed by marine myxobacteria.


Asunto(s)
4-Butirolactona/análogos & derivados , Myxococcales , 4-Butirolactona/biosíntesis , 4-Butirolactona/química , Animales , Organismos Acuáticos
6.
Molecules ; 27(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889529

RESUMEN

Myxobacteria generate natural products with unique chemical structures, which not only feature remarkable biological functions, but also demonstrate unprecedented biosynthetic assembly strategies. The stigmatellins have been previously described as potent inhibitors of the mitochondrial and photosynthetic respiratory chain and originate from an unusual polyketide synthase assembly line. While previous biosynthetic investigations were focused on the formation of the 5,7-dimethoxy-8-hydroxychromone ring, side chain decoration of the hydrophobic alkenyl chain in position 2 was investigated less thoroughly. We report here the full structure elucidation, as well as cytotoxic and antimicrobial activities of three new stigmatellins isolated from the myxobacterium Vitiosangium cumulatum MCy10943T with side chain decorations distinct from previously characterized members of this compound family. The hydrophobic alkenyl chain in position 2 of the herein described stigmatellins feature a terminal carboxylic acid group (1), a methoxy group at C-12' (2) or a vicinal diol (3). These findings provide further implications considering the side chain decoration of these aromatic myxobacterial polyketides and their underlying biosynthesis.


Asunto(s)
Polienos , Policétidos , Vías Biosintéticas , Transporte de Electrón , Sintasas Poliquetidas/metabolismo
7.
Angew Chem Int Ed Engl ; 61(52): e202212946, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36208117

RESUMEN

During our search for novel myxobacterial natural products, we discovered the thiamyxins: thiazole- and thiazoline-rich non-ribosomal peptide-polyketide hybrids with potent antiviral activity. We isolated four congeners of this unprecedented natural product family with the non-cyclized thiamyxin D fused to a glycerol unit at the C-terminus. Alongside their structure elucidation, we present a concise biosynthesis model based on biosynthetic gene cluster analysis and isotopically labelled precursor feeding. We report incorporation of a 2-(hydroxymethyl)-4-methylpent-3-enoic acid moiety by a GCN5-related N-acetyltransferase-like decarboxylase domain featuring polyketide synthase. The thiamyxins show potent inhibition of RNA viruses in cell culture models of corona, zika and dengue virus infection. Their potency up to a half maximal inhibitory concentration of 560 nM combined with milder cytotoxic effects on human cell lines indicate the potential for further development of the thiamyxins.


Asunto(s)
Myxococcales , Policétidos , Infección por el Virus Zika , Virus Zika , Humanos , Myxococcales/metabolismo , ARN , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Infección por el Virus Zika/genética
8.
Chemistry ; 27(67): 16654-16661, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617331

RESUMEN

A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A-D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.


Asunto(s)
Myxococcales , Myxococcus xanthus , Policétidos , Familia de Multigenes , Myxococcales/genética , Myxococcus xanthus/genética , Sintasas Poliquetidas/genética
9.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34003283

RESUMEN

Sorangipyranone was isolated as a novel natural product featuring a unique 2,3-dihydro-γ-4H-pyrone scaffold from cultures of the myxobacterial strain MSr12020. We report here the full structure elucidation of sorangipyranone by spectroscopic techniques including 2D NMR and high-resolution mass spectrometry together with the analysis of the biosynthetic pathway. Determination of the absolute configuration was performed by time-dependent density functional theory-electronic circular dichroism calculations and determination of the applicability of the Snatzke's helicity rule, to correlate the high-wavelength n→π* electronic circular dichroism (ECD) transition and the absolute configuration of the 2,3-dihydro-4H-γ-pyrone, was done by the analysis of low-energy conformers and the Kohn-Sham orbitals. Sorangipyranone outlines a new class of a γ-dihydropyrone-containing natural product comprised of malonyl-CoA-derived building blocks and features a unique polyketide scaffold. In silico analysis of the genome sequence of the myxobacterial strain MSr12020 complemented with feeding experiments employing stable isotope-labeled precursors allowed the identification and annotation of a candidate biosynthetic gene cluster that encodes a modular polyketide synthase assembly line. A model for the biosynthetic pathway leading to the formation of the γ-dihydropyrone scaffold is presented in this study.


Asunto(s)
Myxococcales/metabolismo , Secuencia de Bases , Productos Biológicos/química , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Familia de Multigenes , Myxococcales/química , Myxococcales/genética , Sintasas Poliquetidas/metabolismo , Policétidos/química , Policétidos/metabolismo
10.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527018

RESUMEN

Myxobacteria represent an under-investigated source for biologically active natural products featuring intriguing structural moieties with potential applications, e.g., in the pharmaceutical industry. Sorangiadenosine and the here-discovered 2-hydroxysorangiadenosine are myxobacterial sesquiterpene-nucleosides with an unusual structural moiety, a bicyclic eudesmane-type sesquiterpene. As the biosynthesis of these rare terpene-nucleoside hybrid natural products remains elusive, we investigated secondary metabolomes and genomes of several 2-hydroxysorangiadenosine-producing myxobacteria. We report the isolation and full structure elucidation of 2-hydroxysorangiadenosine and its cytotoxic and antibiotic activities and propose a biosynthetic pathway in the myxobacterium Vitiosangium cumulatum MCy10943T.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Myxococcales/metabolismo , Sesquiterpenos de Eudesmano/farmacología , Antibacterianos/química , Antineoplásicos/química , Proliferación Celular , Neoplasias del Colon/patología , Pruebas de Sensibilidad Microbiana , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/aislamiento & purificación , Células Tumorales Cultivadas
11.
Lipids Health Dis ; 18(1): 42, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717757

RESUMEN

BACKGROUND: Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy. We aimed to determine the effects of moderate (MCT)- versus high-intensity interval training (HIT) on vascular function parameters in physically inactive adults. We hypothesized that individualized HIT prescription would improve the vascular function parameters more than the MCT in a greater proportion of individuals. METHODS: Twenty-one inactive adults were randomly allocated to receive either MCT group (60-75% of their heart rate reserve, [HRR] or HIT group (4 min at 85-95% of peak HRR), 3 days a week for 12 weeks. Vascular function (brachial artery flow-mediated dilation, FMD [%], normalized brachial artery flow-mediated dilation, FMDn [%], aortic pulse wave velocity, PWV [m·s- 1], AIx, augmentation index: aortic and brachial [%]), were measured at baseline and over 12 weeks of training. In order for a participant to be considered a responder to improvements in vascular function parameters (FMDn and PWV), the typical error was calculated in a favorable direction. RESULTS: FMD changed by - 1.0% (SE 2.1, d = 0.388) in the MCT group, and + 1.8% (SE 1.8, d = 0.699) in the HIT group (no significant difference between groups: 2.9% [95% CI, - 3.0 to 8.8]. PWV changed by + 0.1 m·s- 1 (SE 0.2, d = 0.087) in the MCT group but decreased by - 0.4 m·s- 1 in the HIT group (SE 0.2, d = 0.497), with significant difference between groups: - 0.4 [95% CI, - 0.2 to - 0.7]. There was not a significant difference in the prevalence of no-responder for FMD (%) between the MCT and HIT groups (66% versus 36%, P = 0.157). Regarding PWV (m·s- 1), an analysis showed that the prevalence of no-responder was 77% (7 cases) in the MCT group and 45% (5 cases) in the HIT group (P = 0.114). CONCLUSIONS: Under the conditions of the present study, both groups experienced changed in vascular function parameters. Compared to MCT group, HIT is more efficacious for improving FMD and decreasing PWV, in physically inactive adults. TRIAL REGISTRATION: ClinicalTrials.gov NCT02738385 registered on 23 March 2016.


Asunto(s)
Vasos Sanguíneos/fisiología , Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Conducta Sedentaria , Adolescente , Adulto , Enfermedades Cardiovasculares/prevención & control , Endotelio Vascular/fisiología , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Int J Syst Evol Microbiol ; 68(10): 3101-3110, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30113300

RESUMEN

A non-fruiting group of myxobacteria was previously speculated to exist in nature based on metagenomics data containing uncultured members of the order Myxococcales. Here, we describe a myxobacterial strain, designated MCy10636T, which was isolated from a German soil sample collected in 2013. It exhibits swarming characteristics but atypically produces myxospores in the absence of fruiting bodies. The novel strain stains Gram-negative and Congo-red-negative and is characterized mesophilic, neutrophilic, chemoheterotrophic and microaerotolerant. Branched-chain fatty acids are the predominant cellular fatty acids over the straight-chain type, and contain the major fatty acids iso-C17 : 0 2-OH, C16 : 1, iso-C17 : 0 and iso-C15 : 0. Based on blastn results, the 16S rRNA gene sequence reveals similarity (97 %) to Aggregicoccus edonensis MCy1366T, (97 %) Myxococcus macrosporus DSM 14697T, (96 %) Corallococcus coralloides DSM2259T and Corallococcus exiguus Cc e167T. Phylogenetic analysis showed a novel lineage of MCy10636T in the family Myxococcaceae, suborder Cystobacterineae. Based on polyphasic taxonomic characterization, we propose that this unusual, non-fruiting, myxospore-forming and microaerotolerant myxobacterial strain, MCy10636T, represents a novel genus and species, Simulacricoccus ruber gen. nov., sp. nov. (DSM 106554T=NCCB 100651T).


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Myxococcales/genética , Myxococcales/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Mar Drugs ; 16(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158489

RESUMEN

Over the last two decades, halophilic (organisms that thrive at high salt concentrations) and halotolerant (organisms that have adapted to high salt concentrations) myxobacteria emerged as an important source of structurally diverse secondary metabolites from the marine environment. This review explores the advance of metagenomics analysis and 16S rRNA gene phylogeny of the cultured and uncultured myxobacteria from marine and other salt-environments up to July 2018. The diversity of novel groups of myxobacteria in these environments appears unprecedented, especially in the Sorangiineae and Nannocystineae suborders. The Sandaracinaceae related clade in the Sorangiineae suborder seems more widely distributed compared to the exclusively marine myxobacterial cluster. Some of the previously identified clones from metagenomic studies were found to be related to the Nannocystineae suborder. This understanding provides the foundation for a vital, unexplored resource. Understanding the conditions required to cultivate these yet "uncultured" myxobacteria in the laboratory, while a key next step, offers a significant potential to further expand access to diverse secondary metabolites.


Asunto(s)
Organismos Acuáticos/genética , Productos Biológicos/farmacología , Metagenómica , Myxococcales/genética , ARN Ribosómico 16S/genética , Organismos Acuáticos/metabolismo , Biodiversidad , Productos Biológicos/metabolismo , ADN Bacteriano/genética , Myxococcales/metabolismo , Filogenia , Tolerancia a la Sal/genética , Análisis de Secuencia de ADN
15.
Mar Drugs ; 16(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189599

RESUMEN

Prior to 2005, the vast majority of characterized myxobacteria were obtained from terrestrial habitats. Since then, several species of halotolerant and even obligate marine myxobacteria have been described. Chemical analyses of extracts from these organisms have confirmed their ability to produce secondary metabolites with unique chemical scaffolds. Indeed, new genera of marine-derived myxobacteria, particularly Enhygromyxa, have been shown to produce novel chemical scaffolds that differ from those observed in soil myxobacteria. Further studies have shown that marine sponges and terrestrial myxobacteria are capable of producing similar or even identical secondary metabolites, suggesting that myxobacterial symbionts may have been the true producers. Recent in silico analysis of the genome sequences available from six marine myxobacteria disclosed a remarkably versatile biosynthetic potential. With access to ever-advancing tools for small molecule and genetic evaluation, these studies suggest a bright future for expeditions into this yet untapped resource for secondary metabolites.


Asunto(s)
Organismos Acuáticos/metabolismo , Biodiversidad , Productos Biológicos/farmacología , Myxococcales/metabolismo , Poríferos/microbiología , Animales , Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Simulación por Computador , Genoma Bacteriano/genética , Myxococcales/genética , Filogenia , Microbiología del Suelo , Simbiosis
16.
Cephalalgia ; 37(11): 1026-1038, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27521844

RESUMEN

Background Impaired sensory processing in migraine can reflect diminished habituation, increased activation, or even increased gain or amplification of activity from the primary synapse in the brainstem to higher cortical/subcortical brain regions. Methods We scanned 16 episodic migraine (interictal) and 16 healthy controls (cross-sectional study), and evaluated brain response to innocuous air-puff stimulation over the right forehead in the ophthalmic nerve (V1) trigeminal territory. We further evaluated habituation, and cortical/subcortical amplification relative to spinal trigeminal nucleus (Sp5) activation. Results Migraine subjects showed greater amplification from Sp5 to the posterior insula and hypothalamus. In addition, while controls showed habituation to repetitive sensory stimulation in all activated cortical regions (e.g. the bilateral posterior insula and secondary somatosensory cortices), for migraine subjects, habituation was not found in the posterior insula. Moreover, in migraine, the habituation slope was correlated with the amplification ratio in the posterior insula and secondary somatosensory cortex, i.e. greater amplification was associated with reduced habituation in these regions. Conclusions These findings suggest that in episodic migraine, amplified information processing from spinal trigeminal relay nuclei is linked to an impaired habituation response. This phenomenon was localized in the posterior insula, highlighting the important role of this structure in mechanisms supporting altered sensory processing in episodic migraine.


Asunto(s)
Tronco Encefálico/fisiopatología , Corteza Cerebral/fisiopatología , Habituación Psicofisiológica/fisiología , Trastornos Migrañosos/fisiopatología , Adulto , Estudios Transversales , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nervio Trigémino/fisiopatología
17.
Int J Syst Evol Microbiol ; 67(5): 1422-1430, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28141508

RESUMEN

Bacterial strains MCy10943T and MCy10944T were isolated in 2014 from dried Nepalese soil samples collected in 2013 from Phukot, Kalikot, Western Nepal, and Godawari, Lalitpur, Central Nepal. The novel organisms showed typical myxobacterial growth characteristics, which include swarming colony and fruiting body formation on solid surfaces, and a predatory ability to lyse micro-organisms. The strains were aerobic, mesophilic, chemoheterotrophic and showed resistance to various antibiotics. The major cellular fatty acids common to both organisms were C17 : 0 2-OH, iso-C15 : 0, C16 : 1 and iso-C17 : 0. The G+C content of the genomic DNA was 72-75 mol%. Phylogenetic analysis showed that the strains belong to the family Cystobacteraceae, suborder Cystobacterineae, order Myxococcales. The 16S rRNA gene sequences of both strains showed 97-98 % similarity to Archangium gephyra DSM 2261T andCystobacter violaceus DSM 14727T, and 96.7-97 % to Cystobacter fuscus DSM 2262T and Angiococcus disciformis DSM 52716T. Polyphasic taxonomic characterization suggested that strains MCy10943T and MCy10944T represent two distinct species of a new genus, for which the names Vitiosangium cumulatum gen. nov., sp. nov. and Vitiosangium subalbum sp. nov. are proposed. The type strain of Vitiosangium cumulatum is MCy10943T (=DSM 102952T=NCCB 100600T) while that for Vitiosangium subalbum is MCy10944T (=DSM 102953T=NCCB 100601T). In addition, emended descriptions of the genera Archangium and Angiococcus, and of the family Cystobacteraceaeare provided.


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Myxococcales/genética , Myxococcales/aislamiento & purificación , Nepal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Cereb Cortex ; 26(2): 485-97, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25115821

RESUMEN

While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Mapeo Encefálico , Encéfalo/patología , Náusea/patología , Náusea/fisiopatología , Vías Nerviosas/fisiología , Adulto , Análisis de Varianza , Estudios de Cohortes , Femenino , Respuesta Galvánica de la Piel , Frecuencia Cardíaca/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Adulto Joven
19.
Angew Chem Int Ed Engl ; 56(32): 9614-9618, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28590072

RESUMEN

In the search for new secondary metabolites from myxobacteria, a strain from the genus Pyxidicoccus was investigated. This led to the identification of a new class of natural products showing structural novelty and interesting biological activity. Isolation and structure elucidation of two analogues led to the identification of pyxipyrrolone A and B, harboring the novel 3-methylene-2,3,4,5,6,7,8,9-octahydro-1H-benzo[e]isoindol-1-one scaffold. Mosher's ester analysis combined with NMR studies allowed the determination of all stereocenters but one. Genome sequencing of the producer strain led to the identification of a putative biosynthetic gene cluster for the pyxipyrrolones. The compounds showed activity against several cancer cell lines (µm range) with pyxipyrrolone B having 2- to 11-fold higher activity than A, although they differ only by one methylene group.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/metabolismo , Myxococcales/química , Myxococcales/metabolismo , Pirroles/química , Pirroles/metabolismo , Conformación Molecular
20.
Angew Chem Int Ed Engl ; 56(8): 2192-2197, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28098952

RESUMEN

Ripostatin is a promising antibiotic that inhibits RNA polymerase by binding to a novel binding site. In this study, the characterization of the biosynthetic gene cluster of ripostatin, which is a peculiar polyketide synthase (PKS) hybrid cluster encoding cis- and trans-acyltransferase PKS genes, is reported. Moreover, an unprecedented mechanism for phenyl acetic acid formation and loading as a starter unit was discovered. This phenyl-C2 unit is derived from phenylpyruvate (phenyl-C3) and the mechanism described herein explains the mysterious loss of one carbon atom in ripostatin biosynthesis from the phenyl-C3 precursor. Through in vitro reconstitution of the whole loading process, a pyruvate dehydrogenase like protein complex was revealed that performs thiamine pyrophosphate dependent decarboxylation of phenylpyruvate to form a phenylacetyl-S-acyl carrier protein species, which is supplied to the subsequent biosynthetic assembly line for chain extension to finally yield ripostatin.


Asunto(s)
Antibacterianos/metabolismo , Vías Biosintéticas , Lactonas/metabolismo , Myxococcales/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Genes Bacterianos , Familia de Multigenes , Myxococcales/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA