Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604104

RESUMEN

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ornitina/genética , Ornitina/metabolismo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo
2.
Plant Cell Rep ; 41(12): 2393-2413, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242617

RESUMEN

KEY MESSAGE: Elevated methylglyoxal levels contribute to ammonium-induced growth disorders in Arabidopsis thaliana. Methylglyoxal detoxification pathway limitation, mainly the glyoxalase I activity, leads to enhanced sensitivity of plants to ammonium nutrition. Ammonium applied to plants as the exclusive source of nitrogen often triggers multiple phenotypic effects, with severe growth inhibition being the most prominent symptom. Glycolytic flux increase, leading to overproduction of its toxic by-product methylglyoxal (MG), is one of the major metabolic consequences of long-term ammonium nutrition. This study aimed to evaluate the influence of MG metabolism on ammonium-dependent growth restriction in Arabidopsis thaliana plants. As the level of MG in plant cells is maintained by the glyoxalase (GLX) system, we analyzed MG-related metabolism in plants with a dysfunctional glyoxalase pathway. We report that MG detoxification, based on glutathione-dependent glyoxalases, is crucial for plants exposed to ammonium nutrition, and its essential role in ammonium sensitivity relays on glyoxalase I (GLXI) activity. Our results indicated that the accumulation of MG-derived advanced glycation end products significantly contributes to the incidence of ammonium toxicity symptoms. Using A. thaliana frostbite1 as a model plant that overcomes growth repression on ammonium, we have shown that its resistance to enhanced MG levels is based on increased GLXI activity and tolerance to elevated MG-derived advanced glycation end-product (MAGE) levels. Furthermore, our results show that glyoxalase pathway activity strongly affects cellular antioxidative systems. Under stress conditions, the disruption of the MG detoxification pathway limits the functioning of antioxidant defense. However, under optimal growth conditions, a defect in the MG detoxification route results in the activation of antioxidative systems.


Asunto(s)
Compuestos de Amonio , Proteínas de Arabidopsis , Arabidopsis , Lactoilglutatión Liasa , Arabidopsis/metabolismo , Lactoilglutatión Liasa/metabolismo , Piruvaldehído , Compuestos de Amonio/toxicidad , Compuestos de Amonio/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Antioxidantes/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(45): E10778-E10787, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30352850

RESUMEN

Matching ATP:NADPH provision and consumption in the chloroplast is a prerequisite for efficient photosynthesis. In terms of ATP:NADPH ratio, the amount of ATP generated from the linear electron flow does not meet the demand of the Calvin-Benson-Bassham (CBB) cycle. Several different mechanisms to increase ATP availability have evolved, including cyclic electron flow in higher plants and the direct import of mitochondrial-derived ATP in diatoms. By imaging a fluorescent ATP sensor protein expressed in living Arabidopsis thaliana seedlings, we found that MgATP2- concentrations were lower in the stroma of mature chloroplasts than in the cytosol, and exogenous ATP was able to enter chloroplasts isolated from 4- and 5-day-old seedlings, but not chloroplasts isolated from 10- or 20-day-old photosynthetic tissues. This observation is in line with the previous finding that the expression of chloroplast nucleotide transporters (NTTs) in Arabidopsis mesophyll is limited to very young seedlings. Employing a combination of photosynthetic and respiratory inhibitors with compartment-specific imaging of ATP, we corroborate the dependency of stromal ATP production on mitochondrial dissipation of photosynthetic reductant. Our data suggest that, during illumination, the provision and consumption of ATP:NADPH in chloroplasts can be balanced by exporting excess reductants rather than importing ATP from the cytosol.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Técnicas Biosensibles/métodos , Cloroplastos/genética , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Luz , NADP/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal
4.
Plant Physiol ; 177(1): 132-150, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523713

RESUMEN

In plants, an individually darkened leaf initiates senescence much more rapidly than a leaf from a whole darkened plant. Combining transcriptomic and metabolomic approaches in Arabidopsis (Arabidopsis thaliana), we present an overview of the metabolic strategies that are employed in response to different darkening treatments. Under darkened plant conditions, the perception of carbon starvation drove a profound metabolic readjustment in which branched-chain amino acids and potentially monosaccharides released from cell wall loosening became important substrates for maintaining minimal ATP production. Concomitantly, the increased accumulation of amino acids with a high nitrogen-carbon ratio may provide a safety mechanism for the storage of metabolically derived cytotoxic ammonium and a pool of nitrogen for use upon returning to typical growth conditions. Conversely, in individually darkened leaf, the metabolic profiling that followed our 13C-enrichment assays revealed a temporal and differential exchange of metabolites, including sugars and amino acids, between the darkened leaf and the rest of the plant. This active transport could be the basis for a progressive metabolic shift in the substrates fueling mitochondrial activities, which are central to the catabolic reactions facilitating the retrieval of nutrients from the senescing leaf. We propose a model illustrating the specific metabolic strategies employed by leaves in response to these two darkening treatments, which support either rapid senescence or a strong capacity for survival.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Hojas de la Planta/fisiología , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Metabolómica/métodos , Modelos Biológicos , Pigmentación , Hojas de la Planta/metabolismo , Almidón/metabolismo
5.
Int J Mol Sci ; 19(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060552

RESUMEN

For optimal plant growth, carbon and nitrogen availability needs to be tightly coordinated. Mitochondrial perturbations related to a defect in complex I in the Arabidopsis thalianafrostbite1 (fro1) mutant, carrying a point mutation in the 8-kD Fe-S subunit of NDUFS4 protein, alter aspects of fundamental carbon metabolism, which is manifested as stunted growth. During nitrate nutrition, fro1 plants showed a dominant sugar flux toward nitrogen assimilation and energy production, whereas cellulose integration in the cell wall was restricted. However, when cultured on NH4⁺ as the sole nitrogen source, which typically induces developmental disorders in plants (i.e., the ammonium toxicity syndrome), fro1 showed improved growth as compared to NO3- nourishing. Higher energy availability in fro1 plants was correlated with restored cell wall assembly during NH4⁺ growth. To determine the relationship between mitochondrial complex I disassembly and cell wall-related processes, aspects of cell wall integrity and sugar and reactive oxygen species signaling were analyzed in fro1 plants. The responses of fro1 plants to NH4⁺ treatment were consistent with the inhibition of a form of programmed cell death. Resistance of fro1 plants to NH4⁺ toxicity coincided with an absence of necrotic lesion in plant leaves.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , NADH Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Azúcares/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Muerte Celular , Pared Celular/genética , Mitocondrias/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , Nitratos/metabolismo , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismo
6.
Plant Physiol ; 172(4): 2132-2153, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27744300

RESUMEN

The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/genética , Respiración de la Célula , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Mitocondriales , Genes de Plantas , Redes y Vías Metabólicas/genética , Metabolómica , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Hojas de la Planta/ultraestructura , Transcripción Genética , Transcriptoma/genética
7.
Plant Cell Environ ; 40(4): 553-569, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26791824

RESUMEN

Photorespiration is a complex and tightly regulated process occurring in photosynthetic organisms. This process can alter the cellular redox balance, notably via the production and consumption of both reducing and oxidizing equivalents. Under certain circumstances, these equivalents, as well as reactive oxygen or nitrogen species, can become prominent in subcellular compartments involved in the photorespiratory process, eventually promoting oxidative post-translational modifications of proteins. Keeping these changes under tight control should therefore be of primary importance. In order to review the current state of knowledge about the redox control of photorespiration, we primarily performed a careful description of the known and potential redox-regulated or oxidation sensitive photorespiratory proteins, and examined in more details two interesting cases: the glycerate kinase and the glycine cleavage system. When possible, the potential impact and subsequent physiological regulations associated with these changes have been discussed. In the second part, we reviewed the extent to which photorespiration contributes to cellular redox homeostasis considering, in particular, the set of peripheral enzymes associated with the canonical photorespiratory pathway. Finally, some recent biotechnological strategies to circumvent photorespiration for future growth improvements are discussed in the light of these redox regulations.


Asunto(s)
Biotecnología , Luz , Plantas/metabolismo , Plantas/efectos de la radiación , Secuencia de Aminoácidos , Respiración de la Célula/efectos de la radiación , Cisteína/metabolismo , Oxidación-Reducción , Fotosíntesis/efectos de la radiación
8.
J Exp Bot ; 67(10): 3123-35, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26889011

RESUMEN

Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a (13)CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1 The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and (13)C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions.


Asunto(s)
Malato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Fotosíntesis/fisiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Isótopos de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Malato Deshidrogenasa/fisiología , Mitocondrias/enzimología , Oxidación-Reducción
9.
Physiol Plant ; 157(3): 367-79, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27087668

RESUMEN

In photosynthetically active cells, both chloroplasts and mitochondria have the capacity to produce ATP via photophosphorylation and oxidative phosphorylation, respectively. Thus, theoretically, both organelles could provide ATP for the cytosol, but the extent, to which they actually do this, and how the process is regulated, both remain unclear. Most of the evidence discussed comes from experiments with rapid fractionation of isolated protoplasts subjected to different treatments in combination with application of specific inhibitors. The results obtained indicate that, under conditions where ATP demand for photosynthetic CO2 fixation is sufficiently high, the mitochondria supply the bulk of ATP for the cytosol. In contrast, under stress conditions where CO2 fixation is severely limited, ATP will build up in chloroplasts and it can then be exported to the cytosol, by metabolite shuttle mechanisms. Thus, depending on the conditions, either mitochondria or chloroplasts can supply the bulk of ATP for the cytosol. This supply of ATP is discussed in relation to the idea that mitochondrial functions may be tuned to provide an optimal environment for the chloroplast. By balancing cellular redox states, mitochondria can contribute to an optimal photosynthetic capacity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fotosíntesis , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Luz , Mitocondrias/metabolismo , Orgánulos/metabolismo , Oxidación-Reducción , Plantas/efectos de la radiación , Protoplastos
10.
Plant Cell Environ ; 38(1): 224-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25040883

RESUMEN

Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , NADH Deshidrogenasa/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Respiración de la Célula , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Homeostasis , Concentración de Iones de Hidrógeno , Metaboloma , Mitocondrias/metabolismo , Mutación , NADH Deshidrogenasa/genética , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Especies Reactivas de Oxígeno/metabolismo
11.
J Exp Bot ; 65(14): 4037-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24604733

RESUMEN

Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade.


Asunto(s)
Arabidopsis/fisiología , Clorofila/biosíntesis , Fitocromo A/deficiencia , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Respiración de la Célula/genética , Respiración de la Célula/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Luz , Mutación/genética , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
12.
Plant Cell Environ ; 36(11): 2034-45, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23574048

RESUMEN

Ammonium nutrition has been suggested to be associated with alterations in the oxidation-reduction state of leaf cells. Herein, we show that ammonium nutrition in Arabidopsis thaliana increases leaf NAD(P)H/NAD(P)(+) ratio, reactive oxygen species content and accumulation of biomolecules oxidized by free radicals. We used the method of rapid fractionation of protoplasts to analyse which cellular compartments were over-reduced under ammonium supply and revealed that observed changes in NAD(P)H/NAD(P)(+) ratio involved only the extrachloroplastic fraction. We also showed that ammonium nutrition changes mitochondrial electron transport chain activity, increasing mitochondrial reactive oxygen species production. Our results indicate that the functional impairment associated with ammonium nutrition is mainly associated with redox reactions outside the chloroplast.


Asunto(s)
Compuestos de Amonio/farmacología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mitocondrias/metabolismo , NADP/metabolismo , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Respiración de la Célula/efectos de los fármacos , Clorofila/metabolismo , Clorofila A , Cloroplastos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fluorescencia , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Nitratos/farmacología , Oxidación-Reducción/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
13.
Plant Cell Environ ; 35(6): 1084-98, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22171633

RESUMEN

Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.


Asunto(s)
Arabidopsis/fisiología , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Aclimatación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Respiración de la Célula , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Fitocromo A/genética , Hojas de la Planta/ultraestructura
14.
Plant Physiol ; 154(4): 1710-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20966154

RESUMEN

The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.


Asunto(s)
Arabidopsis/fisiología , Microtúbulos , Hojas de la Planta/fisiología , Arabidopsis/genética , Citoesqueleto/metabolismo , Oscuridad , Expresión Génica , Hojas de la Planta/metabolismo , Tubulina (Proteína)/genética
15.
Plant Physiol ; 154(1): 187-96, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20634393

RESUMEN

Using a gas chromatography-mass spectrometry-time of flight technique, we determined major metabolite changes during induction of the carbon-concentrating mechanism in the unicellular green alga Chlamydomonas reinhardtii. In total, 128 metabolites with significant differences between high- and low-CO(2)-grown cells were detected, of which 82 were wholly or partially identified, including amino acids, lipids, and carbohydrates. In a 24-h time course experiment, we show that the amino acids serine and phenylalanine increase transiently while aspartate and glutamate decrease after transfer to low CO(2). The biggest differences were typically observed 3 h after transfer to low-CO(2) conditions. Therefore, we made a careful metabolomic examination at the 3-h time point, comparing low-CO(2) treatment to high-CO(2) control. Five metabolites involved in photorespiration, 11 amino acids, and one lipid were increased, while six amino acids and, interestingly, 21 lipids were significantly lower. Our conclusion is that the metabolic pattern during early induction of the carbon-concentrating mechanism fit a model where photorespiration is increasing.


Asunto(s)
Aclimatación/efectos de los fármacos , Dióxido de Carbono/farmacología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Chlamydomonas reinhardtii/crecimiento & desarrollo , Cinética , Modelos Biológicos , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Factores de Tiempo
16.
Plant Physiol ; 154(3): 1143-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876337

RESUMEN

Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms linking respiration and photosynthesis in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Mitocondriales/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Respiración de la Célula , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas Mitocondriales/genética , Mutagénesis Insercional , Mutación
17.
Quant Plant Biol ; 2: e7, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37077204

RESUMEN

Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP+, the electron acceptors of the linear electron flow (LEF). A higher rate of ATP and NADPH production from the LEF, a higher capacity of carbon fixation by the Calvin-Benson-Bassham (CBB) cycle and a greater consumption of NADH in mitochondria enhance photosynthesis in the chloroplasts, ATP production in the mitochondria and sucrose synthesis in the cytosol and eventually boost plant growth and seed yields in the overexpression lines.

18.
Planta ; 232(6): 1371-82, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20830597

RESUMEN

The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO(2) assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH(4) (+) assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu.


Asunto(s)
Carbono/metabolismo , Cucumis sativus/metabolismo , ADN Mitocondrial/genética , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Western Blotting , Ciclo del Ácido Cítrico
19.
FASEB J ; 23(9): 2872-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19395474

RESUMEN

Using a noninvasive, solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) approach, we track ex vivo the behavior of individual membrane components in isolated, active mitochondria (model system: potato tubers) during physiological processes. The individual phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) membrane constituents were identified as distinct lines by applying MAS (31)P NMR on extracted lipid membranes. However, the CL NMR signal appeared to be very broad in functional mitochondria, indicating a tight complex formation with membrane protein. Calcium stress induced severe membrane degradation without recovery of a single CL NMR resonance. This suggests that calcium overload destroys the outer mitochondrial membrane and does not modify strongly the CL protein complexes in the inner membrane; a conclusion confirmed by respiratory controls. Conversely, mitochondrial membrane disruption on time degradation or mechanical stress generates clearly visible identical CL NMR signals, similar to those observed in rehydrated lipid extracts. Similarly, noninvasive based NMR tracking of lipids in response to diverse physiological stimuli can easily be used for other organelles and whole living cells.


Asunto(s)
Apoptosis , Espectroscopía de Resonancia Magnética/métodos , Lípidos de la Membrana/metabolismo , Membranas Mitocondriales/química , Fósforo , Estrés Fisiológico , Calcio , Mitocondrias , Solanum tuberosum
20.
Nat Commun ; 11(1): 3238, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591540

RESUMEN

The challenge of monitoring in planta dynamic changes of NADP(H) and NAD(H) redox states at the subcellular level is considered a major obstacle in plant bioenergetics studies. Here, we introduced two circularly permuted yellow fluorescent protein sensors, iNAP and SoNar, into Arabidopsis thaliana to monitor the dynamic changes in NADPH and the NADH/NAD+ ratio. In the light, photosynthesis and photorespiration are linked to the redox states of NAD(P)H and NAD(P) pools in several subcellular compartments connected by the malate-OAA shuttles. We show that the photosynthetic increases in stromal NADPH and NADH/NAD+ ratio, but not ATP, disappear when glycine decarboxylation is inhibited. These observations highlight the complex interplay between chloroplasts and mitochondria during photosynthesis and support the suggestions that, under normal conditions, photorespiration supplies a large amount of NADH to mitochondria, exceeding its NADH-dissipating capacity, and the surplus NADH is exported from the mitochondria to the cytosol through the malate-OAA shuttle.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Proteínas Luminiscentes/metabolismo , NADP/metabolismo , NAD/metabolismo , Fotosíntesis/efectos de la radiación , Respiración de la Célula/efectos de la radiación , Cloroplastos/metabolismo , Citosol/metabolismo , Transporte de Electrón/efectos de la radiación , Malatos/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Oxidación-Reducción , Peroxisomas/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA