Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116337, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640798

RESUMEN

The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/ß-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/ß-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/ß catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.


Asunto(s)
Cadmio , Mucosa Intestinal , Vía de Señalización Wnt , Animales , Masculino , Ratones , beta Catenina/metabolismo , Cadmio/toxicidad , Inflamación/inducido químicamente , Inflamación/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones Endogámicos BALB C , Vía de Señalización Wnt/efectos de los fármacos
2.
Bioorg Chem ; 126: 105885, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35636128

RESUMEN

A series of novel cyanopyrimidine-hydrazone hybrids were synthesized and characterized with various spectroscopic techniques. The synthesized compounds were tested at NCI, USA, on a 60-cell line panel and most of the compounds showed remarkable cytotoxic activity against different cancer cell lines. Compound 5a was found to be the most potent compound of the series and it was further selected for five dose assays wherein it exhibited GI50 value of 0.414 µM and 0.417 µM against HOP-62 and OVCAR-4 cell lines respectively. The in-silico mechanistic studies indicated that these compounds are acting through inhibition of lysine specific demethylase 1 (LSD1) as evident from in to vitro LSD1 inhibition activity of compounds. Among various synthesized derivatives, compound 5a was found to have IC50-value of 0.956 µM. In addition, absorption, distribution, metabolism, excretion and toxicity profile (ADMET) was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes which revealed that synthesized compounds showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). The results indicated that compound 5a could be a promising lead compound for further development as a therapeutic agent for anticancer activity.


Asunto(s)
Antineoplásicos , Hidrazonas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Demetilasas , Humanos , Hidrazonas/química , Lisina/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
3.
J Biomol Struct Dyn ; 41(22): 13466-13487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36856061

RESUMEN

A series of novel 5-chloro-6-methylaurone derivatives (6a-p) were synthesized and characterized by various spectroscopic techniques. The synthesized compounds were tested for anticancer activity against 60-human cancer cell line panel derived from nine cancer types at NCI, Bethesda, USA. Among the synthesized compounds, six compounds (6e, 6f, 6h, 6i, 6k and 6 m) exhibited growth inhibition and cytotoxic activity against various human cancer cell lines in one-dose data. The most potent compound among the series, 6i was active against 55 out of 60 human cancer cell lines. Compound 6i showed remarkable % growth inhibition and cytotoxicity against various cancer cell lines exhibiting % GI in the range 36.05-199.03. The compound 6i was further evaluated for five dose assay and exhibited GI50 1.90 µM and 2.70 µM against melanoma and breast cancer cell lines respectively. Further evaluation of 6i for five-dose assay exhibited a diverse spectrum of anti-cancer activity towards all the 60 human cancer cell line panel with the selectivity index ratio ranging 0.854-1.42 and 0.66-1.35 for GI50 and TGI respectively. Based on one-dose and five-dose data compound 6i was further evaluated for cell apoptosis against MDA-MB-468 breast cancer cell line and was found to induce early apoptosis in cells explaining its mode of action. The in-silico studies for the synthesized compounds as LSD1 inhibitors (2H94) have shown better docking score and binding energy comparable to vafidemstat. All the compounds followed Lipinski rule of five. These findings concluded that the compound 6i could lead to the development of a promising therapeutic anticancer agent.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Estructura Molecular
4.
Future Med Chem ; 15(18): 1669-1685, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37732405

RESUMEN

Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 µM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 µM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 µM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias , Amidas/farmacología , Cumarinas/farmacología , Epigénesis Genética , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Proliferación Celular , Ácidos Hidroxámicos/farmacología , Diseño de Fármacos , Antineoplásicos/farmacología , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico
5.
Immunobiology ; 225(1): 151847, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561841

RESUMEN

Protein tyrosine phosphorylation is a potent post-translational regulatory mechanism necessary for maintaining normal physiological functioning of immune cells and it is under the stringent control of antagonizing actions of Protein tyrosine phosphatases and kinases. Two such important Non-Receptor protein tyrosine phosphatases, SHP-1 and SHP-2, have been found to be expressed in immune cells and reported to be key regulators of immune cell development, functions, and differentiation by modulating the duration and amplitude of the downstream cascade transduced via receptors. They also have been conceded as the immune checkpoints & therapeutic targets and hence, it is important to understand their significance intricately. This review compares the roles of these two important cytoplasmic PTPs, SHP1 & SHP-2 in the regulation of peripheral as well as central immunity.


Asunto(s)
Inmunidad Celular , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Animales , Diferenciación Celular/inmunología , Tolerancia Central , Humanos , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Tolerancia Periférica , Transducción de Señal
6.
Front Microbiol ; 8: 889, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572796

RESUMEN

The malaria parasite, Plasmodium, is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host-parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment. Hence understanding the environmental niche of the parasite is crucial in developing strategies to combat this deadly infectious disease. It has been increasingly recognized that interactions between parasite proteins and host factors are essential to establishing infection and virulence at every stage of the parasite life cycle. This review reassesses all of these interactions and discusses their clinical importance in designing therapeutic approaches such as design of novel vaccines. The interactions have been followed from the initial stages of introduction of the parasite under the human dermis until asexual and sexual blood stages which are essential for transmission of malaria. We further classify the interactions as "direct" or "indirect" depending upon their demonstrated ability to mediate direct physical interactions of the parasite with host factors or their indirect manipulation of the host immune system since both forms of interactions are known to have a crucial role during infections. We also discuss the many ways in which this understanding has been taken to the field and the success of these strategies in controlling human malaria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA