Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 66(1): 132-146, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207582

RESUMEN

AIMS/HYPOTHESIS: Antibodies specific to oxidative post-translational modifications (oxPTM) of insulin (oxPTM-INS) are present in most individuals with type 1 diabetes, even before the clinical onset. However, the antigenic determinants of such response are still unknown. In this study, we investigated the antibody response to oxPTM-INS neoepitope peptides (oxPTM-INSPs) and evaluated their ability to stimulate humoral and T cell responses in type 1 diabetes. We also assessed the concordance between antibody and T cell responses to the oxPTM-INS neoantigenic peptides. METHODS: oxPTM-INS was generated by exposing insulin to various reactive oxidants. The insulin fragments resulting from oxPTM were fractionated by size-exclusion chromatography further to ELISA and LC-MS/MS analysis to identify the oxidised peptide neoepitopes. Immunogenic peptide candidates were produced and then modified in house or designed to incorporate in silico-oxidised amino acids during synthesis. Autoantibodies to the oxPTM-INSPs were tested by ELISA using sera from 63 participants with new-onset type 1 diabetes and 30 control participants. An additional 18 fresh blood samples from participants with recently diagnosed type 1 diabetes, five with established disease, and from 11 control participants were used to evaluate, in parallel, CD4+ and CD8+ T cell activation by oxPTM-INSPs. RESULTS: We observed antibody and T cell responses to three out of six LC-MS/MS-identified insulin peptide candidates: A:12-21 (SLYQLENYCN, native insulin peptide 3 [Nt-INSP-3]), B:11-30 (LVEALYLVCGERGFFYTPKT, Nt-INSP-4) and B:21-30 (ERGFFYTPKT, Nt-INSP-6). For Nt-INSP-4 and Nt-INSP-6, serum antibody binding was stronger in type 1 diabetes compared with healthy control participants (p≤0.02), with oxidised forms of ERGFFYTPKT, oxPTM-INSP-6 conferring the highest antibody binding (83% binders to peptide modified in house by hydroxyl radical [●OH] and >88% to in silico-oxidised peptide; p≤0.001 vs control participants). Nt-INSP-4 induced the strongest T cell stimulation in type 1 diabetes compared with control participants for both CD4+ (p<0.001) and CD8+ (p=0.049). CD4+ response to oxPTM-INSP-6 was also commoner in type 1 diabetes than in control participants (66.7% vs 27.3%; p=0.039). Among individuals with type 1 diabetes, the CD4+ response to oxPTM-INSP-6 was more frequent than to Nt-INSP-6 (66.7% vs 27.8%; p=0.045). Overall, 44.4% of patients showed a concordant autoimmune response to oxPTM-INSP involving simultaneously CD4+ and CD8+ T cells and autoantibodies. CONCLUSIONS/INTERPRETATION: Our findings support the concept that oxidative stress, and neoantigenic epitopes of insulin, may be involved in the immunopathogenesis of type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Autoanticuerpos , Linfocitos T CD8-positivos , Cromatografía Liquida , Espectrometría de Masas en Tándem
2.
Thorax ; 78(10): 1019-1027, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36808087

RESUMEN

BACKGROUND: Tracheostomies in children are associated with significant morbidity, poor quality of life, excess healthcare costs and excess mortality. The underlying mechanisms facilitating adverse respiratory outcomes in tracheostomised children are poorly understood. We aimed to characterise airway host defence in tracheostomised children using serial molecular analyses. METHODS: Tracheal aspirates, tracheal cytology brushings and nasal swabs were prospectively collected from children with a tracheostomy and controls. Transcriptomic, proteomic and metabolomic methods were applied to characterise the impact of tracheostomy on host immune response and the airway microbiome. RESULTS: Children followed up serially from the time of tracheostomy up to 3 months postprocedure (n=9) were studied. A further cohort of children with a long-term tracheostomy were also enrolled (n=24). Controls (n=13) comprised children without a tracheostomy undergoing bronchoscopy. Long-term tracheostomy was associated with airway neutrophilic inflammation, superoxide production and evidence of proteolysis when compared with controls. Reduced airway microbial diversity was established pre-tracheostomy and sustained thereafter. CONCLUSIONS: Long-term childhood tracheostomy is associated with a inflammatory tracheal phenotype characterised by neutrophilic inflammation and the ongoing presence of potential respiratory pathogens. These findings suggest neutrophil recruitment and activation as potential exploratory targets in seeking to prevent recurrent airway complications in this vulnerable group of patients.


Asunto(s)
Proteómica , Traqueostomía , Niño , Humanos , Traqueostomía/efectos adversos , Calidad de Vida , Tráquea , Inflamación/etiología
3.
EMBO Rep ; 22(8): e52785, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34224201

RESUMEN

Unveiling the molecular mechanisms of tissue remodelling following injury is imperative to elucidate its regenerative capacity and aberrant repair in disease. Using different omics approaches, we identified enhancer of zester homolog 2 (EZH2) as a key regulator of fibrosis in injured lung epithelium. Epithelial injury drives an enrichment of nuclear transforming growth factor-ß-activated kinase 1 (TAK1) that mediates EZH2 phosphorylation to facilitate its liberation from polycomb repressive complex 2 (PRC2). This process results in the establishment of a transcriptional complex of EZH2, RNA-polymerase II (POL2) and nuclear actin, which orchestrates aberrant epithelial repair programmes. The liberation of EZH2 from PRC2 is accompanied by an EZH2-EZH1 switch to preserve H3K27me3 deposition at non-target genes. Loss of epithelial TAK1, EZH2 or blocking nuclear actin influx attenuates the fibrotic cascade and restores respiratory homeostasis. Accordingly, EZH2 inhibition significantly improves outcomes in a pulmonary fibrosis mouse model. Our results reveal an important non-canonical function of EZH2, paving the way for new therapeutic interventions in fibrotic lung diseases.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Fibrosis , Histonas/metabolismo , Ratones , Fosforilación , Complejo Represivo Polycomb 2/metabolismo
4.
Eur Respir J ; 59(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34561292

RESUMEN

BACKGROUND: Elevated counts of alveolar macrophages and attenuated phagocytic capacity are associated with chronic obstructive pulmonary disease (COPD). Factors governing macrophage phagocytosis are poorly understood. In this study we aimed to compare the influence of airway epithelial cell secretions from individuals with COPD and without COPD (non-COPD) on macrophage phagocytic activity, and the role of antimicrobial peptides (AMPs). METHODS: Supernatants from non-COPD and COPD small airway epithelial cell (SAEC) cultures exposed to non-typeable Haemophilus influenzae (NTHi) were applied to human monocyte-derived macrophages (MDMs) to assess their influence on phagocytosis. SAECs were analysed for changes in AMP expression by quantitative reverse transcription PCR, and the influence of select AMPs on macrophage phenotype and function was assessed by flow cytometry and metabolic activity assay. RESULTS: Secretions from the apical and basolateral surface of NTHi-exposed SAECs from non-COPD donors elicited superior phagocytic capacity in MDMs. Moreover, NTHi exposure led to a rapid increase in the expression of a range of AMPs by non-COPD SAECs, but this response was delayed in COPD SAECs. We demonstrate that treatment with AMPs ß-defensin 2 and S100 calcium binding protein A8/S100 calcium binding protein A9 (S100A8/A9) improved the phagocytic capacity of MDMs. In-depth analysis of the influence of S100A8/A9 on MDMs revealed a role for this AMP in macrophage phenotype and function. Furthermore, we show that the expression of S100A8 and S100A9 is directly regulated by WNT/ß-catenin signalling, a known deregulated pathway in COPD. CONCLUSION: In conclusion, for the first time, we demonstrate that airway epithelium from patients with COPD has a reduced capacity to support the phagocytic function of macrophages in response to acute NTHi exposure, and we identify the WNT/ß-catenin signalling-modulated and epithelium-derived S100A8/A9 as a potent regulator of macrophage phenotype and function.


Asunto(s)
Péptidos Antimicrobianos , Calgranulina A , Calgranulina B , Enfermedad Pulmonar Obstructiva Crónica , Humanos , beta Catenina/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Epitelio/metabolismo , Haemophilus influenzae , Macrófagos/metabolismo , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
5.
PLoS Pathog ; 16(5): e1008342, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365117

RESUMEN

Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.


Asunto(s)
Quitinasas/metabolismo , Legionella pneumophila/metabolismo , Acetilglucosamina/metabolismo , Proteínas Bacterianas/metabolismo , Quitina/metabolismo , Quitinasas/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Enfermedad de los Legionarios/metabolismo , Metales , Mucina-1/metabolismo , Mucinas/metabolismo , Proteolisis , Relación Estructura-Actividad , Factores de Virulencia/metabolismo
6.
PLoS Pathog ; 15(3): e1007620, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856238

RESUMEN

The biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals and grasses. We present the first crystal structure of a B. graminis effector of pathogenicity (CSEP0064/BEC1054), demonstrating it has a ribonuclease (RNase)-like fold. This effector is part of a group of RNase-like proteins (termed RALPHs) which comprise the largest set of secreted effector candidates within the B. graminis genomes. Their exceptional abundance suggests they play crucial functions during pathogenesis. We show that transgenic expression of RALPH CSEP0064/BEC1054 increases susceptibility to infection in both monocotyledonous and dicotyledonous plants. CSEP0064/BEC1054 interacts in planta with the pathogenesis-related protein PR10. The effector protein associates with total RNA and weakly with DNA. Methyl jasmonate (MeJA) levels modulate susceptibility to aniline-induced host RNA fragmentation. In planta expression of CSEP0064/BEC1054 reduces the formation of this RNA fragment. We propose CSEP0064/BEC1054 is a pseudoenzyme that binds to host ribosomes, thereby inhibiting the action of plant ribosome-inactivating proteins (RIPs) that would otherwise lead to host cell death, an unviable interaction and demise of the fungus.


Asunto(s)
Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad de la Planta/inmunología , Plantas/inmunología , ARN de Planta/metabolismo , ARN Ribosómico/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Conformación Proteica , ARN de Planta/genética , ARN Ribosómico/genética , Homología de Secuencia
7.
FASEB J ; 34(6): 7825-7846, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297676

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown cause that is characterized by progressive fibrotic lung remodeling. An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung, herein termed bronchiolization, is often observed in IPF. However, the origin of this dysfunctional distal lung epithelium remains unknown due to a lack of suitable human model systems. In this study, we established a human induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar epithelial type II (ATII)-like cell differentiation that allows us to investigate alveolar epithelial progenitor cell differentiation in vitro. We treated this system with an IPF-relevant cocktail (IPF-RC) to mimic the pro-fibrotic cytokine milieu present in IPF lungs. Stimulation with IPF-RC during differentiation increases secretion of IPF biomarkers and RNA sequencing (RNA-seq) of these cultures reveals significant overlap with human IPF patient data. IPF-RC treatment further impairs ATII differentiation by driving a shift toward an airway epithelial-like expression signature, providing evidence that a pro-fibrotic cytokine environment can influence the proximo-distal differentiation pattern of human lung epithelial cells. In conclusion, we show for the first time, the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization of the lung epithelium in vitro.


Asunto(s)
Células Epiteliales Alveolares/patología , Fibrosis Pulmonar Idiopática/patología , Células Madre Pluripotentes Inducidas/patología , Alveolos Pulmonares/patología , Células Epiteliales Alveolares/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Alveolos Pulmonares/metabolismo , Células Madre/metabolismo , Células Madre/patología
8.
Caries Res ; 55(4): 310-321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247164

RESUMEN

Extrinsic black tooth stain (BS) is a common oral disease associated with lower caries experience in preschool children, although the microbiotic features contributing to the low risk of caries in this group remain elusive. In this study, we aimed at identifying the dominant bacteria in dental plaque to indicate the incidence of caries in the primary dentition. Subjects were divided into 3 groups based on the clinical examination: group CF, children without pigment who had no caries lesions or restorations (n = 18); group CS, children who were diagnosed with severe early childhood caries (n = 17); and group BS, children with pigment (black extrinsic stain) without caries or restorations (n = 15). The total microbial genomic DNA was extracted and subjected to bacterial 16S ribosomal RNA gene sequencing using an Illumina HiSeq platform. The differential dominant bacteria were determined using Wilcoxon rank-sum testing and linear discriminant analysis effect size (LEfSe). Co-occurrence network analysis was performed using sparse correlations for compositional data, calculation and functional features were predicted using PICRUSt. Interestingly, our results showed that the relative abundance of Pseudopropionibacterium, Actinomyces, Rothia, and Cardiobacterium was from high to low and that of Porphyromonas was low to high in the BS, CF, and CS groups, consistent with the clinical incidence of caries in the 3 groups. Moreover, an increased level of Selenomonas_3, Fusobacterium, and Leptotrichia was associated with high caries prevalence. We found that the interactions among genera in the BS and CS plaque communities are less complex than those in the CF communities at the taxon level. Functional features, including cofactor and vitamin metabolism, glycan biosynthesis and metabolism, and translation, significantly increased in caries plaque samples. These bacterial competition- and commensalism-induced changes in microbiota would result in a change of their symbiotic function, finally affecting the balance of oral microflora.


Asunto(s)
Caries Dental , Placa Dental , Microbiota , Preescolar , Caries Dental/epidemiología , Susceptibilidad a Caries Dentarias , Humanos , ARN Ribosómico 16S/genética , Diente Primario
9.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1158-L1164, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267720

RESUMEN

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


Asunto(s)
Aire , Diferenciación Celular , Sistemas de Computación , Metabolismo Energético , Células Epiteliales/citología , Células Epiteliales/metabolismo , Nariz/citología , Ácidos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Glucosa/farmacología , Humanos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Metabolómica
10.
Am J Physiol Cell Physiol ; 317(5): C983-C992, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433692

RESUMEN

The airway epithelium maintains differential glucose concentrations between the airway surface liquid (ASL, ~0.4 mM) and the blood/interstitium (5-6 mM), which is important for defense against infection. Glucose primarily moves from the blood to the ASL via paracellular movement, down its concentration gradient, across the tight junctions. However, there is evidence that glucose can move transcellularly across epithelial cells. Using a Förster resonance energy transfer sensor for glucose, we investigated intracellular glucose concentrations in airway epithelial cells and the role of hexokinases in regulating intracellular glucose concentrations in normoglycemic and hyperglycemic conditions. Our findings indicated that in airway epithelial cells (H441 or primary human bronchial epithelial cells) exposed to 5 mM glucose (normoglycemia), intracellular glucose concentration is in the micromolar range. Inhibition of facilitative glucose transporters (GLUTs) with cytochalasin B reduced intracellular glucose concentration. When cells were exposed to 15 mM glucose (hyperglycemia), intracellular glucose concentration was reduced. Airway cells expressed hexokinases I, II, and III. Inhibition with 3-bromopyruvate decreased hexokinase activity by 25% and elevated intracellular glucose concentration, but levels remained in the micromolar range. Exposure to hyperglycemia increased glycolysis, glycogen, and sorbitol. Thus, glucose enters the airway cell via GLUTs and is then rapidly processed by hexokinase-dependent and hexokinase-independent metabolic pathways to maintain low intracellular glucose concentrations. We propose that this prevents transcellular transport and aids the removal of glucose from the ASL and that the main route of entry for glucose into the ASL is via the paracellular pathway.


Asunto(s)
Glucosa/metabolismo , Hexoquinasa/metabolismo , Hiperglucemia/metabolismo , Mucosa Respiratoria/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Hexoquinasa/antagonistas & inhibidores , Humanos , Piruvatos/farmacología , Mucosa Respiratoria/efectos de los fármacos
11.
J Cell Mol Med ; 23(1): 317-327, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30450773

RESUMEN

Airway epithelial tight junction (TJ) proteins form a resistive barrier to the external environment, however, during respiratory bacterial infection TJs become disrupted compromising barrier function. This promotes glucose flux/accumulation into the lumen which acts as a nutrient source for bacterial growth. Metformin used for the treatment of diabetes increases transepithelial resistance (TEER) and partially prevents the effect of bacteria but the mechanisms of action are unclear. We investigated the effect of metformin and Staphylococcus aureus on TJ proteins, zonula occludins (ZO)-1 and occludin in human airway epithelial cells (H441). We also explored the role of AMP-activated protein kinase (AMPK) and PKCζ in metformin-induced effects. Pretreatment with metformin prevented the S. aureus-induced changes in ZO-1 and occludin. Metformin also promoted increased abundance of full length over smaller cleaved occludin proteins. The nonspecific PKC inhibitor staurosporine reduced TEER but did not prevent the effect of metformin indicating that the pathway may involve atypical PKC isoforms. Investigation of TJ reassembly after calcium depletion showed that metformin increased TEER more rapidly and promoted the abundance and localization of occludin at the TJ. These effects were inhibited by the AMPK inhibitor, compound C and the PKCζ pseudosubstrate inhibitor (PSI). Metformin increased phosphorylation of occludin and acetyl-coA-carboxylase but only the former was prevented by PSI. This study demonstrates that metformin improves TJ barrier function by promoting the abundance and assembly of full length occludin at the TJ and that this process involves phosphorylation of the protein via an AMPK-PKCζ pathway.


Asunto(s)
Metformina/farmacología , Ocludina/metabolismo , Proteína Quinasa C/metabolismo , Staphylococcus aureus/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Línea Celular , Claudina-1/metabolismo , Células Epiteliales/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Fosforilación , Mucosa Respiratoria/citología , Mucosa Respiratoria/microbiología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Proteínas de Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
12.
Respir Res ; 20(1): 87, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072408

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-ß1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS: In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-ß1-driven glycolysis in WI-38 fibroblasts. TGF-ß1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS: We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-ß1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-ß1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS: Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.


Asunto(s)
Fibroblastos/metabolismo , Glucólisis/fisiología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Miofibroblastos/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Miofibroblastos/efectos de los fármacos
13.
Am J Respir Crit Care Med ; 198(3): 340-349, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29425465

RESUMEN

RATIONALE: Aspiration of infective subglottic secretions causes ventilator-associated pneumonia (VAP) in mechanically ventilated patients. Mechanisms underlying subglottic colonization in critical illness have not been defined, limiting strategies for targeted prevention of VAP. OBJECTIVES: To characterize subglottic host defense dysfunction in mechanically ventilated patients in the ICU; to determine whether subglottic mucin contributes to neutrophil phagocytic impairment and bacterial growth. METHODS: Prospective subglottic sampling in mechanically ventilated patients (intubated for four or more days), and newly intubated control patients (intubated for less than 30 min); isolation and culture of primary subglottic epithelial cells from control patients; laboratory analysis of host innate immune defenses. MEASUREMENTS AND MAIN RESULTS: Twenty-four patients in the ICU and 27 newly intubated control patients were studied. Subglottic ICU samples had significantly reduced microbiological diversity and contained potential respiratory pathogens. The subglottic microenvironment in the ICU was characterized by neutrophilic inflammation, significantly increased proinflammatory cytokines and neutrophil proteases, and altered physical properties of subglottic secretions, including accumulation of mucins. Subglottic mucin from ICU patients impaired the capacity of neutrophils to phagocytose and kill bacteria. Phagocytic impairment was reversible on treatment with a mucolytic agent. Subglottic mucus promoted growth and invasion of bacterial pathogens in a novel air-liquid interface model of primary human subglottic epithelium. CONCLUSIONS: Mechanical ventilation in the ICU is characterized by substantial mucin secretion and neutrophilic inflammation. Mucin impairs neutrophil function and promotes bacterial growth. Mucolytic agents reverse mucin-mediated neutrophil dysfunction. Enhanced mucus disruption and removal has potential to augment preventive benefits of subglottic drainage.


Asunto(s)
Inflamación/inmunología , Inflamación/fisiopatología , Mucinas/inmunología , Neutrófilos/inmunología , Respiración Artificial/efectos adversos , Adulto , Anciano , Enfermedad Crítica , Femenino , Glotis/inmunología , Glotis/fisiopatología , Humanos , Inmunidad Innata/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
14.
PLoS Pathog ; 12(6): e1005711, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27327765

RESUMEN

Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Ratones , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
15.
Biochim Biophys Acta ; 1864(11): 1500-5, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27481165

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause chronic infection of the lungs of cystic fibrosis patients. Chaperone-usher systems in P. aeruginosa are known to translocate and assemble adhesive pili on the bacterial surface and contribute to biofilm formation within the host. Here, we report the crystal structure of the tip adhesion subunit CupB6 from the cupB1-6 gene cluster. The tip domain is connected to the pilus via the N-terminal donor strand from the main pilus subunit CupB1. Although the CupB6 adhesion domain bears structural features similar to other CU adhesins it displays an unusual polyproline helix adjacent to a prominent surface pocket, which are likely the site for receptor recognition.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/química , Pseudomonas aeruginosa/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Expresión Génica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Familia de Multigenes , Dominios Proteicos , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Pflugers Arch ; 469(9): 1073-1091, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28455748

RESUMEN

Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.


Asunto(s)
Bicarbonatos/metabolismo , Quinasa de la Caseína II/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Mucosa Nasal/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones
17.
PLoS Pathog ; 11(11): e1005269, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26587649

RESUMEN

Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Filogenia , Subunidades de Proteína/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1865(10): 1255-1266, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28733198

RESUMEN

Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.


Asunto(s)
Proteínas/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Biopelículas , Humanos , Transporte de Proteínas/fisiología
20.
EMBO Rep ; 16(7): 824-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26071602

RESUMEN

The composition of the mitochondrial membrane is important for its architecture and proper function. Mitochondria depend on a tightly regulated supply of phospholipid via intra-mitochondrial synthesis and by direct import from the endoplasmic reticulum. The Ups1/PRELI-like family together with its mitochondrial chaperones (TRIAP1/Mdm35) represent a unique heterodimeric lipid transfer system that is evolutionary conserved from yeast to man. Work presented here provides new atomic resolution insight into the function of a human member of this system. Crystal structures of free TRIAP1 and the TRIAP1-SLMO1 complex reveal how the PRELI domain is chaperoned during import into the intermembrane mitochondrial space. The structural resemblance of PRELI-like domain of SLMO1 with that of mammalian phoshatidylinositol transfer proteins (PITPs) suggest that they share similar lipid transfer mechanisms, in which access to a buried phospholipid-binding cavity is regulated by conformationally adaptable loops.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Fosfolípidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA