Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Phys Chem Chem Phys ; 25(1): 131-141, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475500

RESUMEN

The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.

2.
Nanotechnology ; 33(2)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34610591

RESUMEN

N-acylated substitutedß3oligoamides are known to form unique supramolecular nanorods based on a 3-point hydrogen bond self-assembly motif. This motif is an intermolecular extension of the hydrogen bonding network that stabilizes the 14-helix secondary structure unique toß3oligoamides. Acetylation of the N-terminus of the molecule provides the necessary third hydrogen bond pair of the motif. Here, the possibility of introducing the third hydrogen bond pair via amidation of the C terminus is investigated. While similar in purpose, this modification introduces a chemically distinct new self-assembly motif, also removing the bulky carboxyl group that does not fold into the 14 helix positioning instead as a side chain. Three substitutedß3oligoamide variants with the base sequence LIA (where the letters denoteß3residues with side chains analogous to α amino acids) were compared: N-acylated Ac-ß3[LIA] as a reference, C-amidatedß3[LIA]-CONH2, andß3[LIA] with free unmodified N and C termini as a negative control. The three variants were dissolved in water to promote self-assembly. The self-assembly was characterised using mid- and far-infrared spectroscopy, small angle x-ray scattering (SAXS) and atomic force microscopy (AFM). IR measurements confirmed that all three samples were in a similar conformation, consistent with pseudo 14-helical secondary structures. Far-infrared spectroscopy measurements ofß3[LIA]-CONH2showed distinct peaks consistent with highly organised skeletal modes, i.e. regular supramolecular assembly, that was largely absent from the other two oligoamides. Modelling of SAXS data is consistent with elliptical cylinder structures resulting from nanorod bundling for bothß3[LIA]-CONH2and Ac-ß3[LIA], but not in the unmodified sample. Consistently, AFM imaging showed large nanorod bundling structures inß3[LIA]-CONH2, varied bundling structures in Ac-ß3[LIA], and only aggregation inß3[LIA]. Amidation showed much more organised and robust assembly compared to acetylation, providing a new, easy to synthesize self-assembly motif for helical nanorod assembly that is similar but distinct to N-acylation.

3.
Angew Chem Int Ed Engl ; 60(18): 10342-10349, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33543582

RESUMEN

The formation of a non-specific protein corona around nanoparticles (NPs) has been identified as one of the culprits for failed nanomedicine. The amount and type of adsorbed protein from the blood plasma are known to determine the fate of NPs and the accessibility of targeting ligands. Herein, we show that the adsorbed protein may not only enlarge the NPs and change their surface properties but also, in the case of soft NPs such as polymer micelles, lead to deformation. Poly(1-O-methacryloyl -ß-D-fructopyranose)-b-poly(methylmethacrylate) (P(1-O-MAFru)-b-PMMA) block co-polymers were self-assembled into NPs with a spherical core-shell morphology as determined by small angle neutron scattering (SANS). Upon incubation with albumin, TEM, SANS, and small angle X-ray scattering (SAXS) revealed the adsorption of albumin and deformation of the NPs with a spheroid geometry. Removal of the protein led to the reversal of the morphology back to the spherical core-shell structure. Structural studies and cell studies of uptake of the NPs imply that the observed deformation may influence blood circulation time and cell uptake.


Asunto(s)
Nanopartículas/química , Corona de Proteínas/química , Adsorción , Albúminas/química , Micelas , Estructura Molecular , Nanomedicina , Tamaño de la Partícula , Propiedades de Superficie
4.
Biomacromolecules ; 21(11): 4569-4576, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32597638

RESUMEN

Spontaneous formation of vesicles from the self-assembly of two specific surfactants, one zwitterionic (oleyl amidopropyl betaine, OAPB) and the other anionic (Aerosol-OT, AOT), is explored in water using small-angle scattering techniques. Two factors were found to be critical in the formation of vesicles: surfactant ratio, as AOT concentrations less than equimolar with OAPB result in cylindrical micelles or mixtures of micellar structures, and salt concentration, whereby increasing the amount of NaCl promotes vesicle formation by reducing headgroup repulsions. Small-angle neutron scattering measurements reveal that the vesicles are approximately 30-40 nm in diameter, depending on sample composition. Small-angle X-ray scattering measurements suggest preferential partitioning of OAPB molecules on the vesicle inner layer to support vesicular packing. Heating the vesicles to physiological temperature (37 °C) causes them to collapse into smaller ellipsoidal micelles (2-3 nm), with higher salt concentrations (≥10 mM) inhibiting this transition. These aggregates could serve as responsive carriers for loading or unloading of aqueous cargoes such as drugs and pharmaceuticals, with temperature changes serving as a simple release/uptake mechanism.


Asunto(s)
Micelas , Tensoactivos , Aniones , Betaína , Dispersión del Ángulo Pequeño
5.
Environ Sci Technol ; 54(18): 11173-11181, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32808772

RESUMEN

The fate of plastic waste is a pressing issue since it forms a visible and long-lived reminder of the environmental impact of consumer habits. In this study, we examine the structural changes in the lamellar arrangements of semicrystalline polyethylene (PE) packaging waste with the aim of understanding the physical mechanisms of embrittlement in PE exposed to the marine environment. PE microplastics and macroplastics from identifiable PE packaging were collected in the Atlantic Ocean and compared to new PE boxes. Several experimental techniques interrogate the effects of environmental exposure on their bulk and surface properties. Size exclusion chromatography determines the molecular weight distribution of the PE polymer chains and differential scanning calorimetry gives the crystallinity. Small- and wide-angle X-ray scattering examines the packing of PE chains into semicrystalline lamellae. Longitudinal acoustic mode Raman spectroscopy provides a complementary measurement of the length of PE polymer chains extending through the crystalline lamellar domains. While there is a high degree of uncertainty in the time scale for the changes, the overall picture at the molecular scale is that although PE becomes more crystalline with environmental exposure, the lamellar order present in new packing boxes is disrupted by the weathering process. This process has important implications for embrittlement and subsequent degradation.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Océano Atlántico , Monitoreo del Ambiente , Polietileno/análisis , Contaminantes Químicos del Agua/análisis
6.
Langmuir ; 35(25): 8344-8356, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31122018

RESUMEN

For evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L? phase conduit. However, studies to date have, by necessity, focused on structural transitions occurring in the lipid mesophase. Here, we demonstrate using small-angle neutron scattering that the lipid bilayer of monoolein (the most commonly used lipid for in meso crystallization) can be contrast-matched using deuteration, allowing us to isolate scattering from encapsulated peptides during the crystal growth process for the first time. During in meso crystallization, a clear decrease in form factor scattering intensity of the peptides was observed and directly correlated with crystal growth. A transient fluid lamellar L? phase was observed, providing direct evidence for the proposed mechanism for this technique. This suggests that the peptide passes through a transition from the cubic QII phase, via an L? phase to the lamellar crystalline Lc phase with similar layered spacing. When high protein loading was possible, the lamellar crystalline Lc phase of the peptide in the single crystals was observed. These findings show the mechanism of in meso crystallization for the first time from the perspective of integral membrane proteins.


Asunto(s)
Cristalización/métodos , Membrana Dobles de Lípidos/química , Glicéridos/química , Difracción de Rayos X
7.
Biomacromolecules ; 20(4): 1545-1554, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30768256

RESUMEN

Drug delivery carriers are now widely established because they can increase the therapeutic efficiency of drugs. In general, the aim in this field is to create effective carriers that have large amounts of drugs loaded to minimize drug carrier material that needs to be disposed of. However, there has been little attention so far in the literature on the effect of the amount of loaded drugs on the biological activity. In this paper, we are trying to answer the question of how the drug-loading content will affect the in vitro activity. We use two methods to load paclitaxel (PTX) into micelles based on the glycopolymer, poly(1- O-methacryloyl-ß-d-fructopyranose)- block-poly(methyl methacylate) (Poly(1- O-MAFru)35- b-PMMA145). In the one-step method, the drug is loaded into the particles during the self-assembly process. However, the size of nanoparticle increased with the PTX content from 26 to 50 nm, triggering enhanced cellular uptake by MCF-7 and MDA-MB-231, which was caused by changes in diameter size and not by changes in drug concentration. To keep the nanoparticle size constant, preformed micelles were loaded with PTX (two-step process). The increasing amount of loaded drug led to decreased cellular uptake and reduced cytotoxicity by the cancer cell lines. Small-angle neutron scattering and small-angle X-ray scattering, supported by transmission electron microscopy and dynamic light scattering, exposed the PTX location in the shell. This caused shrinkage of the shell and lower levels of shell hydration, resulting in lower cellular uptake and lower cytotoxicity. Upon the release of PTX, the shell regained its original level of hydration. We could show that because drug loading causes morphology changes, in either the shell or the size, it is impossible to separate the parameters that will influence the biological activity. Although the same phenomenon may not apply to every drug delivery system, it needs to be considered that except for the well-known parameters that affect cell uptake-size, shape, surface chemistry, type of nanoparticle, and presence of bioactive groups-the amount of loaded drugs might change the physicochemical parameters of the nanoparticle and thus the in vitro and potentially the in vivo outcomes.


Asunto(s)
Portadores de Fármacos , Glicoconjugados , Micelas , Nanopartículas/química , Paclitaxel , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Glicoconjugados/síntesis química , Glicoconjugados/química , Glicoconjugados/farmacocinética , Glicoconjugados/farmacología , Humanos , Células MCF-7 , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Tamaño de la Partícula
8.
Biomacromolecules ; 20(1): 273-284, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30550258

RESUMEN

Glycopolymer-coated nanoparticles have attracted significant interest over the past few years, because of their selective interaction with carbohydrate receptors found on the surface of cells. While the type of carbohydrate determines the strength of the ligand-receptor interaction, the presentation of the sugar can be highly influential as the carbohydrate needs to be accessible in order to display good binding. To shine more light on the relationship between nanoparticle structure and cell uptake, we have designed several micelles based on fructose containing block copolymers, which are selective to GLUT5 receptors found on breast cancer cell lines. The polymers were based on poly-d,l-lactide (PLA), poly(2-hydroxyethyl) acrylate (PHEA), and poly(1- O-acryloyl-ß-d-fructopyranose) (P[1- O-AFru]). A set of six micelles was synthesized based on four fructose containing micelles (PLA242- b-P[1- O-AFru]41, PLA242- b-P[1- O-AFru]179, PLA242- b-P[1- O-AFru46-c-HEA214], PLA242- b-PHEA280- b-P[1- O-AFru]41) and two neutral controls (PLA247- b-PHEA53 and PLA247- b-PHEA166). SAXS analysis revealed that longer hydrophilic polymers led to lower aggregation numbers and larger hydrophilic shells, suggesting more glycopolymer mobility. Cellular uptake studies via flow cytometry and confocal laser scanning microscopy (CLSM) confirmed that the micelles based on PLA242- b-P[1- O-AFru]179 show, by far, the highest uptake by MCF-7 and MDA-MB-231 breast cancer cell lines while the uptake of all micelles by RAW264.7 cell is negligible. The same micelle displayed was far superior in penetrating MCF-7 cancer spheroids (three-dimensional (3D) model). Taking the physicochemical characterization obtained by SAXS and the in vitro results together, it could be concluded that the glycopolymer chains on the surface of micelle must display high mobility. Moreover, a high density of fructose was found to be necessary to achieve good biological activity as lowering the epitope density led immediately to lower cellular uptake. This work showed that it is crucial to understand the micelle structure in order to maximize the biological activity of glycopolymer micelles.


Asunto(s)
Fructosa/análogos & derivados , Micelas , Nanopartículas/metabolismo , Animales , Transporte Biológico , Humanos , Células MCF-7 , Ratones , Nanopartículas/química , Nanopartículas/toxicidad , Péptidos/química , Poliésteres/química , Células RAW 264.7 , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
9.
Biomacromolecules ; 20(5): 1944-1955, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30933481

RESUMEN

Many biomedical applications employ covalent attachment to synthetic polymers to enhance the efficiency of proteins or other therapeutically active molecules. We report here the impact of polymer conjugation on the structural and thermal stability of a protein model, the bovine serum albumin, using a variable number of linear biodegradable polyphosphoesters, which were covalently tethered to the protein. We observed that BSA's secondary structure measured by circular dichroism is independent of the conjugation. Small-angle neutron scattering, however, reveals a change from ellipsoid to globular shape of the whole complex arising from a slight compaction of the protein core and an increase of the polymer's radius of gyration as a function of the grafting polymer density. In particular, we highlight a gradual change of the polymer conformation around the protein and elongation of the semimajor dimension of the ellipsoidal protein. Our results will contribute to the description of biophysical characteristics of a new class of biologically relevant protein-polymer conjugates.


Asunto(s)
Nanoconjugados/química , Albúmina Sérica Bovina/química , Plásticos Biodegradables/química , Organofosfatos/química , Polietilenglicoles/química , Estabilidad Proteica
10.
Phys Chem Chem Phys ; 21(34): 18727-18740, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31424463

RESUMEN

The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Intrínsecamente Desordenadas/química , Concentración Osmolar , Conformación Proteica , Dispersión del Ángulo Pequeño , Solventes/química , Rayos X
11.
Phys Rev Lett ; 120(20): 207801, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864321

RESUMEN

We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.

12.
Langmuir ; 34(14): 4360-4373, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29557659

RESUMEN

In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.

13.
Biophys J ; 113(3): 572-579, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793212

RESUMEN

Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above-zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic α-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into α-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3°C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein α-helix.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Agua/metabolismo , Fosfatidilcolinas/metabolismo , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Propiedades de Superficie
14.
Biochim Biophys Acta ; 1857(1): 107-114, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26514405

RESUMEN

Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/ß allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.


Asunto(s)
Clorofila/análogos & derivados , Cianobacterias/metabolismo , Ficobilisomas/fisiología , Clorofila/fisiología , Fotosíntesis , Ficobilisomas/química
15.
J Am Chem Soc ; 139(18): 6314-6320, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418247

RESUMEN

Achieving a high rate of ionic transport through porous membranes and ionic channels is important in numerous applications ranging from energy storage to water desalination, but it still remains a challenge. Herein we show that ions can quickly pass through interlayer spaces in hydrated boron nitride (BN) membranes. Measurements of surface-charge governed ionic currents between BN nanosheets in a variety of salt solutions (KCl, NaCl and CaCl2) at low salt concentrations (<10-4 M) showed several orders of magnitude higher ionic conductivity compared to that of the bulk solution. Moreover, due to the outstanding chemical and thermal stability of BN, the ionic conduits remain fully functional at temperatures up to 90 °C. The BN conduits can operate in acidic and basic environments and do not degrade after immersing in solutions with extreme pH (pH ∼ 0 or 14) for 1 week. Those excellent properties make the BN ionic conduits attractive for applications in nanofluidic devices and membrane separation.

16.
Langmuir ; 33(10): 2559-2570, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28215089

RESUMEN

Lubricin (LUB) is a "mucin-like" glycoprotein found in synovial fluids and coating the cartilage surfaces of articular joints, which is now generally accepted as one of the body's primary boundary lubricants and antiadhesive agents. LUB's superior lubrication and antiadhesion are believed to derive from its unique interfacial properties by which LUB molecules adhere to surfaces (and biomolecules, such as hyaluronic acid and collagen) through discrete interactions localized to its two terminal end domains. These regionally specific interactions lead to self-assembly behavior and the formation of a well-ordered "telechelic" polymer brush structure on most substrates. Despite its importance to biological lubrication, detailed knowledge on the LUB's self-assembled brush structure is insufficient and derived mostly from indirect and circumstantial evidence. Neutron reflectometry (NR) was used to directly probe the self-assembled LUB layers, confirming the polymer brush architecture and resolving the degree of hydration and level of surface coverage. While attempting to improve the LUB contrast in the NR measurements, the LUB layers were exposed to a 20 mM solution of CaCl2, which resulted in a significant change in the polymer brush structural parameters consisting of a partial denaturation of the surface-binding end-domain regions, partial dehydration of the internal mucin-domain "loop", and collapse of the outer mucin-domain surface region. A series of atomic force microscopy measurements investigating the LUB layer surface morphology, mechanical properties, and adhesion forces in phosphate-buffered saline and CaCl2 solutions reveal that the structural changes induced by calcium ion interactions also significantly alter key properties, which may have implications to LUB's efficacy as a boundary lubricant and wear protector in the presence of elevated calcium ion concentrations.

17.
Biomacromolecules ; 18(8): 2439-2445, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28665589

RESUMEN

Quantification of adsorbed biomolecules (enzymes, proteins) at the cellulose interface is a major challenge in developing eco-friendly biodiagnostics. Here, a novel methodology is developed to visualize and quantify the adsorption of antibody from solution to the cellulose-liquid interface. The concept is to deuterate cellulose by replacing all nonexchangeable hydrogens from the glucose rings with deuterium in order to enhance the scattering contrast between the cellulose film surface and adsorbed antibody molecules. Deuterated cellulose (DC) was obtained from bacterial (Gluconacetobacter xylinus strain) cellulose, which was grown in heavy water (D2O) media with a deuterated glycerol as a carbon source. For comparison, hydrogenated cellulose (HC) was obtained from cellulose acetate. Both HC and DC thin films were prepared on silicon substrate by spin coating. X-ray reflectivity (XR) shows the formation of homogeneous and smooth film. Neutron reflectivity (NR) at the liquid/film interface reveals swelling of the cellulose film by a factor of 2-3× its initial thickness. An Immunoglobulin G (IgG), used as a model antibody, was adsorbed at the liquid-solid interface of cellulose (HC) and deuterated cellulose (DC) films under equilibrium and surface saturation conditions. NR measurements of the IgG antibody layer adsorbed onto the DC film can clearly be visualized, in sharp contrast in comparison to the HC film. The average thickness of the IgG adsorbed layer onto cellulose films is 127 ± 5 Å and a partial monolayer is formed. Visualization and quantification of adsorbed IgG is shown by large difference in scattering length density (SLD) between DC (7.1 × 10-6 Å-2) and IgG (4.1 × 10-6 Å-2) in D2O, which enhanced the scattering contrast in NR. Quartz crystal measurements (QCM-D) were used as a complementary method to NR to quantify the adsorbed IgG over the cellulose interface.


Asunto(s)
Celulosa/análogos & derivados , Inmunoglobulina G/química , Membranas Artificiales , Animales , Celulosa/química
18.
Soft Matter ; 13(5): 1006-1011, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28083581

RESUMEN

The thermal annealing behaviour of an electrolyte-triggered calixarene hydrogelator is found to depend strongly on the specific metal chloride used. While the lithium chloride gel showed typical gel-sol transitions as a function of temperature, the magnesium chloride gel was found to repeatedly strengthen with heat-cool cycles. Structural investigations using small-angle neutron scattering, and scanning probe microscopy, suggest that the annealing behaviour is associated with a change in morphology of the fibrous structures supporting the gel. On prolonged standing at room temperature, the magnesium chloride gel underwent a gel-crystal transition, with the collapsing gel accompanied by the deposition of crystals of a magnesium complex of the proline-functionalised calix[4]arene gelator.

19.
Magn Reson Chem ; 55(5): 464-471, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27002682

RESUMEN

The apparent diffusion coefficients of 23 Na+ ions and the solute 2-fluoroethylamine present in the aqueous domain of a Myverol/water bulk bicontinuous cubic phase (BCP) were measured using pulsed field-gradient spin echo (PGSE) NMR spectroscopy. The measured values were dependent on the diffusion time interval, which is a characteristic of restricted diffusion. The translational motion of 23 Na+ and water in the aqueous channels of a cubic phase were simulated using a Monte-Carlo random walk algorithm, and the simulation results were compared with those from real PGSE NMR experiments. The simulations indicated that diffusion of 23 Na+ ions and water would appear to be restricted even on the shortest timescales available to PGSE NMR experiments. The micro-viscosity of the aqueous domain of the BCPs was estimated from the longitudinal relaxation times of 23 Na+ and 2-fluoroethylamine; this was three times higher than in free solution and suggests one of (but not the only) likely impediments to the release of hydrophilic drugs from stabilised aqueous dispersions of BCPs (cubosomes) when they are used therapeutically in vivo. Monte Carlo simulations of diffusive efflux from cubosomes suggest that the principal impediment to drug release is presented by a surfactant or lipid barrier at the cubosome surface, which separates the BCP aqueous channels from the bulk solution. The dynamics inferred from these studies informs quantitative predictions of drug delivery from cubosomes. Copyright © 2016 John Wiley & Sons, Ltd.

20.
Beilstein J Org Chem ; 13: 995-1007, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28684979

RESUMEN

In the present work, we describe the synthesis of a single-chain, phenylene-modified bolalipid with two phosphocholine headgroups, PC-C18pPhC18-PC, using a Sonogashira cross-coupling reaction as a key step. The aggregation behaviour was studied as a function of temperature using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small angle neutron scattering (SANS). We show that our new bolalipid self-assembles into nanofibres, which transform into flexible nanofibres at 27 °C and further to small elongated micelles at 45 °C. Furthermore, the miscibility of the bolalipid with bilayer-forming phosphatidylcholines (DMPC, DPPC, and DSPC) was investigated by means of DSC, TEM, FTIR, and small angle X-ray scattering (SAXS). We could show that the PC-C18pPhC18-PC is partially miscible with saturated phosphatidylcholines; however, closed lipid vesicles with an increased thermal stability were not found. Instead, bilayer fragments and disk-like aggregates are formed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA