Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 155(6): 3983-3994, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38934563

RESUMEN

Advancing age is associated with decreased sensitivity to temporal cues in word segments, particularly when target words follow non-informative carrier sentences or are spectrally degraded (e.g., vocoded to simulate cochlear-implant stimulation). This study investigated whether age, carrier sentences, and spectral degradation interacted to cause undue difficulty in processing speech temporal cues. Younger and older adults with normal hearing performed phonemic categorization tasks on two continua: a Buy/Pie contrast with voice onset time changes for the word-initial stop and a Dish/Ditch contrast with silent interval changes preceding the word-final fricative. Target words were presented in isolation or after non-informative carrier sentences, and were unprocessed or degraded via sinewave vocoding (2, 4, and 8 channels). Older listeners exhibited reduced sensitivity to both temporal cues compared to younger listeners. For the Buy/Pie contrast, age, carrier sentence, and spectral degradation interacted such that the largest age effects were seen for unprocessed words in the carrier sentence condition. This pattern differed from the Dish/Ditch contrast, where reducing spectral resolution exaggerated age effects, but introducing carrier sentences largely left the patterns unchanged. These results suggest that certain temporal cues are particularly susceptible to aging when placed in sentences, likely contributing to the difficulties of older cochlear-implant users in everyday environments.


Asunto(s)
Estimulación Acústica , Envejecimiento , Señales (Psicología) , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Anciano , Adulto Joven , Adulto , Factores de Edad , Envejecimiento/psicología , Envejecimiento/fisiología , Persona de Mediana Edad , Factores de Tiempo , Femenino , Masculino , Acústica del Lenguaje , Fonética , Audiometría del Habla , Anciano de 80 o más Años , Adolescente , Inteligibilidad del Habla
2.
Ear Hear ; 38(6): e335-e342, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562426

RESUMEN

OBJECTIVES: As people age, they experience reduced temporal processing abilities. This results in poorer ability to understand speech, particularly for degraded input signals. Cochlear implants (CIs) convey speech information via the temporal envelopes of a spectrally degraded input signal. Because there is an increasing number of older CI users, there is a need to understand how temporal processing changes with age. Therefore, the goal of this study was to quantify age-related reduction in temporal processing abilities when attempting to discriminate words based on temporal envelope information from spectrally degraded signals. DESIGN: Younger normal-hearing (YNH) and older normal-hearing (ONH) participants were presented a continuum of speech tokens that varied in silence duration between phonemes (0 to 60 ms in 10-ms steps), and were asked to identify whether the stimulus was perceived more as the word "dish" or "ditch." Stimuli were vocoded using tonal carriers. The number of channels (1, 2, 4, 8, 16, and unprocessed) and temporal envelope low-pass filter cutoff frequency (50 and 400 Hz) were systematically varied. RESULTS: For the unprocessed conditions, the YNH participants perceived the word ditch for smaller silence durations than the ONH participants, indicating that aging affects temporal processing abilities. There was no difference in performance between the unprocessed and 16-channel, 400-Hz vocoded stimuli. Decreasing the number of spectral channels caused decreased ability to distinguish dish and ditch. Decreasing the envelope cutoff frequency also caused decreased ability to distinguish dish and ditch. The overall pattern of results revealed that reductions in spectral and temporal information had a relatively larger effect on the ONH participants compared with the YNH participants. CONCLUSIONS: Aging reduces the ability to utilize brief temporal cues in speech segments. Reducing spectral information-as occurs in a channel vocoder and in CI speech processing strategies-forces participants to use temporal envelope information; however, older participants are less capable of utilizing this information. These results suggest that providing as much spectral and temporal speech information as possible would benefit older CI users relatively more than younger CI users. In addition, the present findings help set expectations of clinical outcomes for speech understanding performance by adult CI users as a function of age.


Asunto(s)
Envejecimiento/fisiología , Señales (Psicología) , Percepción del Habla/fisiología , Percepción del Tiempo/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
J Assoc Res Otolaryngol ; 21(4): 373-391, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32643075

RESUMEN

Older adults understand speech with comparative ease in quiet, but signal degradation can hinder speech understanding much more than it does in younger adults. This difficulty may result, in part, from temporal processing deficits related to the aging process and/or high-frequency hearing loss that can occur in listeners who have normal- or near-normal-hearing thresholds in the speech frequency range. Temporal processing deficits may manifest as degraded neural representation in peripheral and brainstem/midbrain structures that lead to compensation, or changes in response strength in auditory cortex. Little is understood about the process by which the neural representation of signals is improved or restored by age-related cortical compensation mechanisms. Therefore, we used vocoding to simulate spectral degradation to compare the behavioral and neural representation of words that contrast on a temporal dimension. Specifically, we used the closure duration of the silent interval between the vowel and the final affricate /t∫/ or fricative /ʃ/ of the words DITCH and DISH, respectively. We obtained perceptual identification functions and electrophysiological neural measures (frequency-following responses (FFR) and cortical auditory-evoked potentials (CAEPs)) to unprocessed and vocoded versions of these words in young normal-hearing (YNH), older normal- or near-normal-hearing (ONH), and older hearing-impaired (OHI) listeners. We found that vocoding significantly reduced the slope of the perceptual identification function in only the OHI listeners. In contrast to the limited effects of vocoding on perceptual performance, vocoding had robust effects on the FFRs across age groups, such that stimulus-to-response correlations and envelope magnitudes were significantly lower for vocoded vs. unprocessed conditions. Increases in the P1 peak amplitude for vocoded stimuli were found for both ONH and OHI listeners, but not for the YNH listeners. These results suggest that while vocoding substantially degrades early neural representation of speech stimuli in the midbrain, there may be cortical compensation in older listeners that is not seen in younger listeners.


Asunto(s)
Envejecimiento/fisiología , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos , Percepción del Habla/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Trends Hear ; 23: 2331216519886688, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31808373

RESUMEN

Aging may limit speech understanding outcomes in cochlear-implant (CI) users. Here, we examined age-related declines in auditory temporal processing as a potential mechanism that underlies speech understanding deficits associated with aging in CI users. Auditory temporal processing was assessed with a categorization task for the words dish and ditch (i.e., identify each token as the word dish or ditch) on a continuum of speech tokens with varying silence duration (0 to 60 ms) prior to the final fricative. In Experiments 1 and 2, younger CI (YCI), middle-aged CI (MCI), and older CI (OCI) users participated in the categorization task across a range of presentation levels (25 to 85 dB). Relative to YCI, OCI required longer silence durations to identify ditch and exhibited reduced ability to distinguish the words dish and ditch (shallower slopes in the categorization function). Critically, we observed age-related performance differences only at higher presentation levels. This contrasted with findings from normal-hearing listeners in Experiment 3 that demonstrated age-related performance differences independent of presentation level. In summary, aging in CI users appears to degrade the ability to utilize brief temporal cues in word identification, particularly at high levels. Age-specific CI programming may potentially improve clinical outcomes for speech understanding performance by older CI listeners.


Asunto(s)
Envejecimiento , Implantes Cocleares/estadística & datos numéricos , Percepción del Habla , Adulto , Anciano , Implantación Coclear , Señales (Psicología) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Habla , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA