Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Blood ; 141(9): 1036-1046, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36096473

RESUMEN

Tγδ large granular lymphocyte leukemia (LGLL) is a rare variant of T-cell LGLL (T-LGLL) that has been less investigated as compared with the more frequent Tαß LGLL, particularly in terms of frequency of STAT3 and STAT5b mutations. In this study, we characterized the clinical and biological features of 137 patients affected by Tγδ LGLL; data were retrospectively collected from 1997 to 2020 at 8 referral centers. Neutropenia and anemia were the most relevant clinical features, being present in 54.2% and 49.6% of cases, respectively, including severe neutropenia and anemia in ∼20% of cases each. Among the various treatments, cyclosporine A was shown to provide the best response rates. DNA samples of 97 and 94 cases were available for STAT3 and STAT5b mutation analysis, with 38.1% and 4.2% of cases being mutated, respectively. Clinical and biological features of our series of Tγδ cases were also compared with a recently published Tαß cohort including 129 cases. Though no differences in STAT3 and STAT5b mutational frequency were found, Tγδ cases more frequently presented with neutropenia (P = .0161), anemia (P < .0001), severe anemia (P = .0065), and thrombocytopenia (P = .0187). Moreover, Vδ2- cases displayed higher frequency of symptomatic disease. Overall, Tγδ cases displayed reduced survival with respect to Tαß cases (P = .0017). Although there was no difference in STAT3 mutation frequency, our results showed that Tγδ LGLL represents a subset of T-LGLL characterized by more frequent symptoms and reduced survival as compared with Tαß LGLL.


Asunto(s)
Leucemia Linfocítica Granular Grande , Neutropenia , Humanos , Estudios Retrospectivos , Leucemia Linfocítica Granular Grande/genética , Mutación , Neutropenia/genética
2.
Haematologica ; 109(1): 163-174, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439335

RESUMEN

T-cell large granular lymphocyte leukemia (T-LGLL) is a chronic lymphoproliferative disorder characterized by the clonal expansion of T-cell large granular lymphocytes (T-LGL). Immunophenotypic and genotypic features contribute to discriminate symptomatic (CD8+ STAT3-mutated T-LGLL) from clinically indolent patients, this latter group including CD8+ wildtype (wt), CD4+ STAT5B-mutated and wt cases. T-LGL lymphoproliferation is sustained both by somatic gain-offunction mutations (i.e., STAT3 and STAT5B) and by pro-inflammatory cytokines, but little information is available on the activity of T-LGLL non-leukemic cells. In this study, we characterized pro-inflammatory cells in the peripheral blood of T-LGLL patients and analyzed their role in supporting the leukemic growth. In symptomatic patients we found that cell populations not belonging to the leukemic component showed a discrete pro-inflammatory pattern. In particular, CD8+ STAT3-mutated cases showed a skewed Th17/Treg ratio and an abnormal distribution of monocyte populations characterized by increased intermediate and non-classical monocytes. We also demonstrated that monocytes released high levels of interleukin-6 after CCL5 stimulation, a chemokine specifically expressed only by leukemic LGL. Conversely, in asymptomatic cases an altered distribution of monocyte populations was not detected. Moreover, T-LGLL patients' monocytes showed abnormal activation of signaling pathways, further supporting the different pathogenic role of monocytes in patients in discrete clinical settings. Altogether, our data contribute to deepening the knowledge on the different cell subtypes in T-LGLL, focusing particularly on non-leukemic cell populations and thus offering the rationale for new therapeutic strategies.


Asunto(s)
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Células Asesinas Naturales/metabolismo , Citocinas
3.
Blood Cancer J ; 14(1): 13, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238319

RESUMEN

Type T Large Granular Lymphocyte Leukemia (T-LGLL) is a chronic disorder characterized by the abnormal proliferation of clonal cytotoxic T cells. The intriguing association of T-LGLL with autoimmune and inflammatory diseases, the most prominent example being rheumatoid arthritis, raises questions about the underlying pathophysiologic relationships between these disorders which share several biological and clinical features, most notably neutropenia, which is considered as a clinical hallmark. Recent progress in molecular genetics has contributed to a better understanding of pathogenetic mechanisms, thus moving our knowledge in the field of LGL leukemias forward. Focusing on the constitutive activation of STAT3 pathway and the well-established role of STAT3 mutations in T-LGLL, we herein discuss whether the T cell clones occurring in comorbid conditions are the cause or the consequence of the immune-inflammatory associated events. Overall, this review sheds light on the intricate relationships between inflammation and cancer, emphasizing the importance of the STAT3 gene and its activation in the pathophysiology of these conditions. Gaining a deeper understanding of these underlying mechanisms seeks to pave the way for the development of novel targeted therapies for patients affected by inflammation-related cancers.


Asunto(s)
Artritis Reumatoide , Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Mutación , Linfocitos T Citotóxicos , Inflamación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
5.
Blood Rev ; 60: 101058, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36870881

RESUMEN

Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate immunophenotypic and molecular characterization. As in many other hematological conditions, genomic features are taking research efforts one step further and are also becoming instrumental in refining discrete subsets of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease variants is needed to better manage patients with LGL disorders.


Asunto(s)
Leucemia Linfocítica Granular Grande , Leucemia , Neutropenia , Humanos , Leucemia Linfocítica Granular Grande/diagnóstico , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/terapia , Células Asesinas Naturales , Mutación
6.
Leukemia ; 36(11): 2551-2557, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36109593

RESUMEN

LGL disorders are rare hematological neoplasias with remarkable phenotypic, genotypic and clinical heterogeneity. Despite these constraints, many achievements have been recently accomplished in understanding the aberrant pathways involved in the LGL leukemogenesis. In particular, compelling evidence implicates STAT signaling as a crucial player of the abnormal cell survival. As interest increases in mapping hematological malignancies by molecular genetics, the relevance of STAT gene mutations in LGL disorders has emerged thanks to their association with discrete clinical features. STAT3 and STAT5b mutations are recognized as the most common gain-of-function genetic lesions up to now identified in T-LGL leukemia (T-LGLL) and are actually regarded as the hallmark of this disorder, also contributing to further refine its subclassification. However, from a clinical perspective, the relationships between T-LGLL and other borderline and overlapping conditions, including reactive cell expansions, clonal hematopoiesis of indeterminate potential (CHIP) and unrelated clonopathies are not fully established, sometimes making the diagnosis of T cell malignancy challenging. In this review specifically focused on the topic of clonality of T-LGL disorders we will discuss the rationale of the appropriate steps to aid in distinguishing LGLL from its mimics, also attempting to provide new clues to stimulate further investigations designed to move this field forward.


Asunto(s)
Neoplasias Hematológicas , Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/genética , Mutación , Transducción de Señal
7.
Nat Commun ; 13(1): 3298, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676278

RESUMEN

Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative disease, scantily described in literature. A deep-analysis, in an initial cohort of 9 Tγδ LGLL compared to 23 healthy controls, shows that Tγδ LGLL dominant clonotypes are mainly public and exhibit different V-(D)-J γ/δ usage between patients with symptomatic and indolent Tγδ neoplasm. Moreover, some clonotypes share the same rearranged sequence. Data obtained in an enlarged cohort (n = 36) indicate the importance of a combined evaluation of immunophenotype and STAT mutational profile for the correct management of patients with Tγδ cell expansions. In fact, we observe an association between Vδ2/Vγ9 clonality and indolent course, while Vδ2/Vγ9 negativity correlates with symptomatic disease. Moreover, the 7 patients with STAT3 mutations have neutropenia and a CD56-/Vδ2- phenotype, and the 3 cases with STAT5B mutations display an asymptomatic clinical course and CD56/Vδ2 expression. All these data indicate that biological characterization is needed for Tγδ-cell neoplasm definition.


Asunto(s)
Leucemia Linfocítica Granular Grande , Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Inmunofenotipificación , Leucemia Linfocítica Granular Grande/diagnóstico , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Mutación , Fenotipo , Receptores de Antígenos de Linfocitos T gamma-delta/genética
8.
Blood Cancer J ; 12(2): 31, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210405

RESUMEN

CD4+ T-cell large granular lymphocyte leukemia (T-LGLL) is a rare subtype of T-LGLL with unknown etiology. In this study, we molecularly characterized a cohort of patients (n = 35) by studying their T-cell receptor (TCR) repertoire and the presence of somatic STAT5B mutations. In addition to the previously described gain-of-function mutations (N642H, Y665F, Q706L, S715F), we discovered six novel STAT5B mutations (Q220H, E433K, T628S, P658R, P702A, and V712E). Multiple STAT5B mutations were present in 22% (5/23) of STAT5B mutated CD4+ T-LGLL cases, either coexisting in one clone or in distinct clones. Patients with STAT5B mutations had increased lymphocyte and LGL counts when compared to STAT5B wild-type patients. TCRß sequencing showed that, in addition to large LGL expansions, non-leukemic T cell repertoires were more clonal in CD4+ T-LGLL compared to healthy. Interestingly, 25% (15/59) of CD4+ T-LGLL clonotypes were found, albeit in much lower frequencies, in the non-leukemic CD4+ T cell repertoires of the CD4+ T-LGLL patients. Additionally, we further confirmed the previously reported clonal dominance of TRBV6-expressing clones in CD4+ T-LGLL. In conclusion, CD4+ T-LGLL patients have a typical TCR and mutation profile suggestive of aberrant antigen response underlying the disease.


Asunto(s)
Leucemia Linfocítica Granular Grande , Linfocitos T CD4-Positivos , Mutación con Ganancia de Función , Humanos , Leucemia Linfocítica Granular Grande/genética , Mutación , Factor de Transcripción STAT5/genética
9.
Cells ; 10(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685780

RESUMEN

Large granular lymphocyte leukemia (LGLL) is a rare lymphoproliferative disorder characterized by the clonal expansion of cytotoxic T-LGL or NK cells. Chronic isolated neutropenia represents the clinical hallmark of the disease, being present in up to 80% of cases. New advances were made in the biological characterization of neutropenia in these patients, in particular STAT3 mutations and a discrete immunophenotype are now recognized as relevant features. Nevertheless, the etiology of LGLL-related neutropenia is not completely elucidated and several mechanisms, including humoral abnormalities, bone marrow infiltration/substitution and cell-mediated cytotoxicity might cooperate to its pathogenesis. As a consequence of the multifactorial nature of LGLL-related neutropenia, a targeted therapeutic approach for neutropenic patients has not been developed yet; moreover, specific guidelines based on prospective trials are still lacking, thus making the treatment of this disorder a complex and challenging task. Immunosuppressive therapy represents the current, although poorly effective, therapeutic strategy. The recent identification of a STAT3-mediated miR-146b down-regulation in neutropenic T-LGLL patients emphasized the pathogenetic role of STAT3 activation in neutropenia development. Accordingly, JAK/STAT3 axis inhibition and miR-146b restoration might represent tempting strategies and should be prospectively evaluated for the treatment of neutropenic LGLL patients.


Asunto(s)
Leucemia Linfocítica Granular Grande/complicaciones , Leucemia Linfocítica Granular Grande/terapia , Neutropenia/complicaciones , Neutropenia/terapia , Diagnóstico Diferencial , Proteína Ligando Fas/metabolismo , Humanos , Inmunofenotipificación , Leucemia Linfocítica Granular Grande/diagnóstico , Leucemia Linfocítica Granular Grande/inmunología , Neutropenia/diagnóstico , Neutropenia/inmunología , Pronóstico
10.
Front Oncol ; 11: 682658, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211851

RESUMEN

The biology of plasma cell dyscrasias (PCD) involves both genetic and immune-related factors. Since genetic lesions are necessary but not sufficient for Multiple Myeloma (MM) evolution, several authors hypothesized that immune dysfunction involving both B and T cell counterparts plays a key role in the pathogenesis of the disease. The aim of this study is to evaluate the impact of cornerstone treatments for Multiple Myeloma into immune system shaping. A large series of 976 bone marrow samples from 735 patients affected by PCD was studied by flow analysis to identify discrete immune subsets. Treated MM samples displayed a reduction of CD4+ cells (p<0.0001) and an increase of CD8+ (p<0.0001), CD8+/DR+ (p<0.0001) and CD3+/CD57+ (p<0.0001) cells. Although these findings were to some extent demonstrated also following bortezomib treatment, a more pronounced cytotoxic polarization was shown after exposure to autologous stem cell transplantation (ASCT) and Lenalidomide (Len) treatment. As a matter of fact, samples of patients who received ASCT (n=110) and Len (n=118) were characterized, towards untreated patients (n=138 and n=130, respectively), by higher levels of CD8+ (p<0.0001 and p<0.0001, respectively), CD8+/DR+ (p=0.0252 and p=0.0001, respectively) and CD3+/CD57+ cells (p<0.0001 and p=0.0006, respectively) and lower levels of CD4+ lymphocytes (p<0.0001 and p=0.0005, respectively). We demonstrated that active MM patients are characterized by a relevant T cell modulation and that most of these changes are therapy-related. Current Myeloma treatments, notably ASCT and Len treatments, polarize immune system towards a dominant cytotoxic response, likely contributing to the anti-Myeloma effect of these regimens.

11.
Front Oncol ; 10: 152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133291

RESUMEN

Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαß, CD4+ Tαß, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.

12.
Leukemia ; 34(4): 1116-1124, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31740810

RESUMEN

Large granular lymphocyte leukemia (LGLL) is a rare and chronic lymphoproliferative disorder characterized by the clonal expansion of LGLs. LGLL patients can be asymptomatic or develop cytopenia, mostly neutropenia. Somatic STAT3 and STAT5b mutations have been recently reported in approximately 40% of patients. The aim of this study is to analyze clinical and biological features of a large cohort of LGLL patients to identify prognostic markers affecting patients' outcome. In 205 LGLL patients, neutropenia (ANC < 1500/mm3) was the main feature (38%), with severe neutropenia (ANC < 500/mm3) being present in 20.5% of patients. STAT3 mutations were detected in 28.3% patients and were associated with ANC < 500/mm3 (p < 0.0001), Hb < 90 g/L (p = 0.0079) and treatment requirement (p < 0.0001) while STAT5b mutations were found in 15/152 asymptomatic patients. By age-adjusted univariate analysis, ANC < 500/mm3 (p = 0.013), Hb < 90 g/L (p < 0.0001), treatment requirement (p = 0.001) and STAT3 mutated status (p = 0.011) were associated to reduced overall survival (OS). By multivariate analysis, STAT3 mutated status (p = 0.0089) and Hb < 90 g/L (p = 0.0011) were independently associated to reduced OS. In conclusion, we identified clinical and biological features associated to reduced OS in LGLL and we demonstrated the adverse impact of STAT3 mutations in patients' survival, suggesting that this biological feature should be regarded as a potential target of therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Linfocítica Granular Grande/mortalidad , Mutación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT5/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Transducción de Señal , Tasa de Supervivencia
13.
Front Oncol ; 10: 613570, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585237

RESUMEN

Large granular lymphocyte leukemias (LGLL) are sustained by proliferating cytotoxic T cells or NK cells, as happens in Chronic Lymphoproliferative Disorder of Natural Killer cells (CLPD-NK), whose etiology is only partly understood. Different hypotheses have been proposed on the original events triggering NK cell hyperactivation and transformation, including a role of viral agents. In this perspective, we revise the lines of evidence that suggested a pathogenetic role in LGLL of the exposure to retroviruses and that identified Epstein Barr Virus (EBV) in other NK cell leukemias and lymphomas and focus on the contrasting data about the importance of viral agents in CLPD-NK. EBV was detected in aggressive NK leukemias but not in the indolent CLPD-NK, where seroreactivity against HTLV-1 retrovirus envelope BA21 protein antigens has been reported in patients, although lacking clear evidence of HTLV infection. We next present original results of whole exome sequencing data analysis that failed to identify viral sequences in CLPD-NK. We recently demonstrated that proliferating NK cells of patients harbor several somatic lesions likely contributing to sustain NK cell proliferation. Thus, we explore whether "neoantigens" similar to the BA21 antigen could be generated by aberrancies present in the leukemic clone. In light of the literature and new data, we evaluated the intriguing hypothesis that NK cell activation can be caused by retroviral agents located outside the hematopoietic compartment and on the possible mechanisms involved with the prospects of immunotherapy-based approaches to limit the growth of NK cells in CLPD-NK disease.

14.
Blood Cancer J ; 10(4): 42, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321919

RESUMEN

The molecular pathogenesis of chronic lymphoproliferative disorder of natural killer (NK) cells (CLPD-NK) is poorly understood. Following the screening of 57 CLPD-NK patients, only five presented STAT3 mutations. WES profiling of 13 cases negative for STAT3/STAT5B mutations uncovered an average of 18 clonal, population rare and deleterious somatic variants per patient. The mutational landscape of CLPD-NK showed that most patients carry a heavy mutational burden, with major and subclonal deleterious mutations co-existing in the leukemic clone. Somatic mutations hit genes wired to cancer proliferation, survival, and migration pathways, in the first place Ras/MAPK, PI3K-AKT, in addition to JAK/STAT (PIK3R1 and PTK2). We confirmed variants with putative driver role of MAP10, MPZL1, RPS6KA1, SETD1B, TAOK2, TMEM127, and TNFRSF1A genes, and of genes linked to viral infections (DDX3X and RSF1) and DNA repair (PAXIP1). A truncating mutation of the epigenetic regulator TET2 and a variant likely abrogating PIK3R1-negative regulatory activity were validated. This study significantly furthered the view of the genes and pathways involved in CLPD-NK, indicated similarities with aggressive diseases of NK cells and detected mutated genes targetable by approved drugs, being a step forward to personalized precision medicine for CLPD-NK patients.


Asunto(s)
Biomarcadores de Tumor/genética , Evolución Clonal , Células Asesinas Naturales/patología , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Mutación , Factor de Transcripción STAT3/genética , Adulto , Anciano , Femenino , Humanos , Células Asesinas Naturales/metabolismo , Masculino , Persona de Mediana Edad , Secuenciación del Exoma/métodos
15.
Onco Targets Ther ; 13: 7605-7614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848413

RESUMEN

Lymphoproliferative disorders are a heterogeneous group of malignant clonal proliferations of lymphocytes whose diagnosis remains challenging, despite diagnostic criteria are now well established, due to their heterogeneity in clinical presentation and immunophenotypic profile. Lymphoid T-cell disorders are more rarely seen than B-cell entities and more difficult to diagnose for the absence of a specific immunophenotypic signature. Flow cytometry is a useful tool in diagnosing T-cell lymphoproliferative disorders since it is not only able to better characterize T-cell neoplasms but also to resolve some very complicated cases, in particular those in which a small size population of neoplastic cells is available for the analysis. Here, we report three patients with mature T-cell neoplasms with atypical clinical and biological features in which analysis of peripheral blood and bone marrow specimens by means of multicolor flow cytometry was very useful to identify and characterize three rare T-cell lymphoproliferative disorders, such as angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma not otherwise specified and T-cell prolymphocytic leukemia. The aim of this case series report is not only to describe three rare cases of lymphoproliferative neoplasms but also to raise awareness that a fast, highly sensitive, and reproducible procedure, such as flow cytometry immunophenotyping, can have a determinant diagnostic role in these patients.

16.
Best Pract Res Clin Haematol ; 32(3): 207-216, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31585621

RESUMEN

Large Granular Lymphocyte Leukemia (LGLL) is a rare chronic lymphoproliferative disorder characterized by the clonal expansion of Large Granular Lymphocytes (LGLs). Among LGLL, the 2016 WHO classification recognizes two different entities, i.e. T-LGLL and the provisional entity Chronic Lymphoproliferative disorder of NK cells (CLPD-NK). In both subtypes neutropenia represents the hallmark of the disease and is frequently regarded as the leading reason to start treatment. Leukemic LGLs are characterized by the up-regulation of several pro-survival signaling pathways, the most relevant being the JAK-STAT axis, whose constitutive activation is partly explained by somatic mutations in STAT3 and STAT5b. In addiction, in the last few years, a relationship between STAT3 mutations/activation and the development of neutropenia was found. Given that backbone treatment relying on immunosuppressive agents is generally unsatisfactory, novel agents targeting the JAK/STAT pathway can represent a turning point in LGLL treatment.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Células Asesinas Naturales , Leucemia Linfocítica Granular Grande , Linfocitosis , Mutación , Transducción de Señal/genética , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/metabolismo , Leucemia Linfocítica Granular Grande/patología , Linfocitosis/genética , Linfocitosis/metabolismo , Linfocitosis/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA