Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Semin Cell Dev Biol ; 98: 192-201, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31059816

RESUMEN

Cancer cells rewire their metabolism to support proliferation, growth and survival. In metastatic melanoma the BRAF oncogenic pathway is a master regulator of this process, highlighting the importance of metabolic reprogramming in the pathogenesis of this tumor and offering potential therapeutic approaches. Metabolic adaptation of melanoma cells generally requires increased amounts of NAD+, an essential redox cofactor in cellular metabolism and a signaling molecule. Nicotinamide phosphoribosyltransferase (NAMPT) is the most important NAD+ biosynthetic enzyme in mammalian cells and a direct target of the BRAF oncogenic signaling pathway. These findings suggest that NAMPT is an attractive new therapeutic target, particularly in combination strategies with BRAF or MEK inhibitors. Here we review current knowledge on how oncogenic signaling reprograms metabolism in BRAF-mutated melanoma, and discuss how NAMPT/NAD+ axis contributes to these processes. Lastly, we present evidence supporting a role of NAMPT as a novel therapeutic target in metastatic melanoma.


Asunto(s)
Melanoma/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Humanos , Melanoma/patología , Melanoma/secundario
2.
J Biol Chem ; 295(11): 3635-3651, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31988240

RESUMEN

All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.


Asunto(s)
Núcleo Celular/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Estrés Fisiológico , Animales , Línea Celular Tumoral , Células HeLa , Humanos , Cinética , Melanoma Experimental/enzimología , Melanoma Experimental/patología , Ratones , Células 3T3 NIH , Mononucleótido de Nicotinamida/química , Nicotinamida Fosforribosiltransferasa/química , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas
3.
Haematologica ; 102(11): 1878-1889, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28860341

RESUMEN

IT-901 is a novel and selective NF-κB inhibitor with promising activity in pre-clinical models. Here we show that treatment of chronic lymphocytic leukemia cells (CLL) with IT-901 effectively interrupts NF-κB transcriptional activity. CLL cells exposed to the drug display elevated mitochondrial reactive oxygen species, which damage mitochondria, limit oxidative phosphorylation and ATP production, and activate intrinsic apoptosis. Inhibition of NF-κB signaling in stromal and myeloid cells, both tumor-supportive elements, fails to induce apoptosis, but impairs NF-κB-driven expression of molecules involved in cell-cell contacts and immune responses, essential elements in creating a pro-leukemic niche. The consequence is that accessory cells do not protect CLL cells from IT-901-induced apoptosis. In this context, IT-901 shows synergistic activity with ibrutinib, arguing in favor of combination strategies. IT-901 is also effective in primary cells from patients with Richter syndrome (RS). Its anti-tumor properties are confirmed in xenograft models of CLL and in RS patient-derived xenografts, with documented NF-κB inhibition and significant reduction of tumor burden. Together, these results provide pre-clinical proof of principle for IT-901 as a potential new drug in CLL and RS.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Leucemia Linfocítica Crónica de Células B/metabolismo , FN-kappa B/antagonistas & inhibidores , Adenina/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Silenciador del Gen , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , FN-kappa B/genética , FN-kappa B/metabolismo , Piperidinas , Pirazoles/farmacología , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cell Rep ; 40(13): 111404, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170835

RESUMEN

Dysregulation of alternative splicing in prostate cancer is linked to transcriptional programs activated by AR, ERG, FOXA1, and MYC. Here, we show that FOXA1 functions as the primary orchestrator of alternative splicing dysregulation across 500 primary and metastatic prostate cancer transcriptomes. We demonstrate that FOXA1 binds to the regulatory regions of splicing-related genes, including HNRNPK and SRSF1. By controlling trans-acting factor expression, FOXA1 exploits an "exon definition" mechanism calibrating alternative splicing toward dominant isoform production. This regulation especially impacts splicing factors themselves and leads to a reduction of nonsense-mediated decay (NMD)-targeted isoforms. Inclusion of the NMD-determinant FLNA exon 30 by FOXA1-controlled oncogene SRSF1 promotes cell growth in vitro and predicts disease recurrence. Overall, we report a role for FOXA1 in rewiring the alternative splicing landscape in prostate cancer through a cascade of events from chromatin access, to splicing factor regulation, and, finally, to alternative splicing of exons influencing patient survival.


Asunto(s)
Empalme Alternativo , Neoplasias de la Próstata , Empalme Alternativo/genética , Cromatina , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Transactivadores/metabolismo
5.
Cancers (Basel) ; 12(12)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419372

RESUMEN

Serine-threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity.

6.
Antioxid Redox Signal ; 31(15): 1150-1165, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31456414

RESUMEN

Aim: Nicotinamide adenine dinucleotide (NAD+) plays central roles in a wide array of normal and pathological conditions. Inhibition of NAD+ biosynthesis can be exploited therapeutically in cancer, including melanoma. To obtain quantitation of NAD+ levels in live cells and to address the issue of the compartmentalization of NAD+ biosynthesis, we exploited a recently described genetically encoded NAD+ biosensor (LigA-circularly permutated Venus), which was targeted to the cytosol, mitochondria, and nuclei of BRAF-V600E A375 melanoma cells, a model of metastatic melanoma (MM). Results: FK866, a specific inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), the main NAD+-producing enzyme in MM cells, was used to monitor NAD+ depletion kinetics at the subcellular level in biosensor-transduced A375 cells. In addition, we treated FK866-blocked A375 cells with NAD+ precursors, including nicotinamide, nicotinic acid, nicotinamide riboside, and quinolinic acid, highlighting an organelle-specific capacity of each substrate to rescue from NAMPT block. Expression of NAD+ biosynthetic enzymes was then biochemically studied in isolated organelles, revealing the presence of NAMPT in all three cellular compartments, whereas nicotinate phosphoribosyltransferase was predominantly cytosolic and mitochondrial, and nicotinamide riboside kinase mitochondrial and nuclear. In keeping with biosensor data, quinolinate phosphoribosyltransferase was expressed at extremely low levels. Innovation and Conclusions: Throughout this work, we validated the use of genetically encoded NAD+ biosensors to characterize subcellular distribution of NAD+ production routes in MM. The chance of real-time monitoring of NAD+ fluctuations after chemical perturbations, together with a deeper comprehension of the cofactor biosynthesis compartmentalization, strengthens the foundation for a targeted strategy of NAD+ pool manipulation in cancer and metabolic diseases.


Asunto(s)
Técnicas Biosensibles/métodos , Melanoma/metabolismo , NAD/metabolismo , Orgánulos/metabolismo , Línea Celular Tumoral , Humanos , Lentivirus/genética , Microscopía Confocal , Mitocondrias/metabolismo , Imagen de Lapso de Tiempo
7.
Front Immunol ; 10: 1720, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402913

RESUMEN

Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the "NADome" in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.


Asunto(s)
Vías Biosintéticas/genética , Regulación Enzimológica de la Expresión Génica , Inmunidad Celular , Inmunidad Innata , NAD/biosíntesis , Neoplasias/etiología , Neoplasias/metabolismo , Metabolismo Energético , Epigénesis Genética , Humanos , Neoplasias/patología , Sirtuinas/metabolismo , Triptófano/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
8.
Nat Commun ; 10(1): 4116, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511522

RESUMEN

Damage-associated molecular patterns (DAMPs) are molecules that can be actively or passively released by injured tissues and that activate the immune system. Here we show that nicotinate phosphoribosyltransferase (NAPRT), detected by antibody-mediated assays and mass spectrometry, is an extracellular ligand for Toll-like receptor 4 (TLR4) and a critical mediator of inflammation, acting as a DAMP. Exposure of human and mouse macrophages to NAPRT activates the inflammasome and NF-κB for secretion of inflammatory cytokines. Furthermore, NAPRT enhances monocyte differentiation into macrophages by inducing macrophage colony-stimulating factor. These NAPRT-induced effects are independent of NAD-biosynthetic activity, but rely on NAPRT binding to TLR4. In line with our finding that NAPRT mediates endotoxin tolerance in vitro and in vivo, sera from patients with sepsis contain the highest levels of NAPRT, compared to patients with other chronic inflammatory conditions. Together, these data identify NAPRT as a endogenous ligand for TLR4 and a mediator of inflammation.


Asunto(s)
Espacio Extracelular/metabolismo , Inflamación/enzimología , Pentosiltransferasa/metabolismo , Receptor Toll-Like 4/metabolismo , Diferenciación Celular , Líquido Extracelular/enzimología , Humanos , Inflamación/genética , Inflamación/patología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Monocitos/citología , Células Mieloides/metabolismo , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Pentosiltransferasa/sangre , Pentosiltransferasa/química , Unión Proteica , Factores de Riesgo , Sepsis/sangre , Sepsis/enzimología
9.
Oncotarget ; 9(27): 18997-19005, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721178

RESUMEN

Metastatic melanoma carrying BRAF mutations represent a still unmet medical need as success of BRAF inhibitors is limited by development of resistance. Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in NAD biosynthesis. An extracellular form (eNAMPT) possesses cytokine-like functions and is up-regulated in inflammatory disorders, including cancer. Here we show that eNAMPT is actively released in culture supernatants of melanoma cell lines. Furthermore, cells that become resistant to BRAF inhibitors (BiR) show a significant increase of eNAMPT levels. Plasma from mice xenografted with BiR cell lines contain higher eNAMPT levels compared to tumor-free animals. Consistently, eNAMPT levels are elevated in 113 patients with BRAF-mutated metastatic melanoma compared to 50 with localized disease or to 38 healthy donors, showing a direct correlation with markers of tumor burden, such as LDH, or aggressive disease (such as PD-L1). eNAMPT concentrations decrease in response to therapy with BRAF/MEK inhibitors, but increase again at progression, as inferred from the serial analysis of 50 patients. Lastly, high eNAMPT levels correlate with a significantly shorter overall survival. Our findings suggest that eNAMPT is a novel marker of tumor burden and response to therapy in patients with metastatic melanoma carrying BRAF mutations.

10.
Oncotarget ; 8(9): 15894-15911, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28199980

RESUMEN

PD-L1 is expressed by a subset of patients with metastatic melanoma (MM) with an unfavorable outcome. Its expression is increased in cells resistant to BRAF or MEK inhibitors (BRAFi or MEKi). However, the function and regulation of expression of PD-L1 remain incompletely understood.After generating BRAFi- and MEKi-resistant cell lines, we observed marked up-regulation of PD-L1 expression. These cells were characterized by a common gene expression profile with up-regulation of genes involved in cell movement. Consistently, in vitro they showed significantly increased invasive properties. This phenotype was controlled in part by PD-L1, as determined after silencing the molecule. Up-regulation of PD-L1 was due to post-transcriptional events controlled by miR-17-5p, which showed an inverse correlation with PD-L1 mRNA. Direct binding between miR-17-5p and the 3'-UTR of PD-L1 mRNA was demonstrated using luciferase reporter assays.In a cohort of 80 BRAF-mutated MM patients treated with BRAFi or MEKi, constitutive expression of PD-L1 in the absence of immune infiltrate, defined the patient subset with the worst prognosis. Furthermore, PD-L1 expression increased in tissue biopsies after the metastatic lesions became resistant to BRAFi or MEKi. Lastly, plasmatic miR-17-5p levels were higher in patients with PD-L1+ than PD-L1- lesions.In conclusion, our findings indicate that PD-L1 expression induces a more aggressive behavior in melanoma cells. We also show that PD-L1 up-regulation in BRAFi or MEKi-resistant cells is partly due to post-transcriptional mechanisms that involve miR-17-5p, suggesting that miR-17-5p may be used as a marker of PD-L1 expression by metastatic lesions and ultimately a predictor of responses to BRAFi or MEKi.


Asunto(s)
Antígeno B7-H1/genética , Expresión Génica/genética , MicroARNs/genética , Progresión de la Enfermedad , Femenino , Humanos , Melanoma/genética , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA