Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476515

RESUMEN

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP , Neoplasias Pancreáticas , Humanos , Quinasa I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Neoplasias Pancreáticas
2.
J Antimicrob Chemother ; 76(10): 2651-2658, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34312680

RESUMEN

BACKGROUND: Multiple tissue reservoirs are established soon after HIV infection, and some tissues may also be pharmacological sanctuaries. Parenteral administration of antiretroviral (ARV) drugs for treatment and prevention of HIV infection is an active area of drug development. The influence of route of administration on ARV tissue pharmacokinetics is not known. OBJECTIVES: To investigate ARV pharmacokinetics in lymphatic and select non-lymphatic tissues (e.g. brain and testes) after intramuscular and subcutaneous administration compared with oral in BALB/c mice. METHODS: Tissue concentrations of cobicistat, efavirenz, elvitegravir, maraviroc, rilpivirine, tenofovir alafenamide and tenofovir disoproxil fumarate were determined. The tissue penetration ratio (TPR) was the primary measure for comparison; a change in TPR arises from factors affecting tissue distribution controlling for changes in systemic bioavailability. RESULTS: Intramuscular and subcutaneous delivery increased TPRs in the lymph node and spleen for 27 of 28 (96%) drug administration events. Decreased TPRs, however, were found in some tissues such as the brain and testes. CONCLUSIONS: These results demonstrate a change in route of drug administration from oral to intramuscular or subcutaneous can change tissue uptake. This has implications for HIV pharmacotherapy. For example, HIV persists in lymphoid tissues despite long-term oral ARV therapy, and low ARV concentrations have been found in lymphoid tissues. The improved ARV lymphatic tissue bioavailability with intramuscular and subcutaneous administration allows future studies to investigate these routes of drug administration as a therapeutic manoeuvre to limit viral persistence and eliminate viral sanctuaries in the lymphatic tissues, which is a prerequisite for eradication of HIV.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Preparaciones Farmacéuticas , Animales , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Tejido Linfoide , Ratones , Ratones Endogámicos BALB C
3.
Nat Mater ; 19(8): 910-920, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341511

RESUMEN

Long-acting cabotegravir (CAB) extends antiretroviral drug administration from daily to monthly. However, dosing volumes, injection site reactions and health-care oversight are obstacles towards a broad usage. The creation of poloxamer-coated hydrophobic and lipophilic CAB prodrugs with controlled hydrolysis and tissue penetrance can overcome these obstacles. To such ends, fatty acid ester CAB nanocrystal prodrugs with 14, 18 and 22 added carbon chains were encased in biocompatible surfactants named NMCAB, NM2CAB and NM3CAB and tested for drug release, activation, cytotoxicity, antiretroviral activities, pharmacokinetics and biodistribution. Pharmacokinetics studies, performed in mice and rhesus macaques, with the lead 18-carbon ester chain NM2CAB, showed plasma CAB levels above the protein-adjusted 90% inhibitory concentration for up to a year. NM2CAB, compared with NMCAB and NM3CAB, demonstrated a prolonged drug release, plasma circulation time and tissue drug concentrations after a single 45 mg per kg body weight intramuscular injection. These prodrug modifications could substantially improve CAB's effectiveness.


Asunto(s)
Antirretrovirales/metabolismo , Nanoestructuras/química , Profármacos/química , Profármacos/metabolismo , Piridonas/metabolismo , Animales , Antirretrovirales/farmacología , Antirretrovirales/toxicidad , Transporte Biológico , Preparaciones de Acción Retardada , Composición de Medicamentos , Interacciones Farmacológicas , Estabilidad de Medicamentos , Ratones , Piridonas/farmacología , Piridonas/toxicidad
4.
Mol Pharm ; 17(1): 155-166, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31742407

RESUMEN

Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.


Asunto(s)
Darunavir/administración & dosificación , Inhibidores de la Proteasa del VIH/administración & dosificación , Profármacos/administración & dosificación , Profármacos/síntesis química , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Darunavir/síntesis química , Darunavir/química , Darunavir/farmacocinética , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacocinética , VIH-1/efectos de los fármacos , VIH-1/enzimología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Profármacos/química , Profármacos/farmacocinética , Ratas , Espectrometría de Masas en Tándem
5.
Nanomedicine ; 29: 102266, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32679269

RESUMEN

HPMA copolymer-based dexamethasone prodrug (P-Dex) and PEG-based dexamethasone prodrug (PEG-Dex, ZSJ-0228) were previously found to passively target the inflamed kidney and provide potent and sustained resolution of nephritis in NZB/WF1 lupus-prone mice. While both prodrug nanomedicines effectively ameliorate lupus nephritis, they have demonstrated distinctively different safety profiles. To explore the underlining mechanisms of these differences, we conducted a head-to-head comparative PK/BD study of P-Dex and PEG-Dex on NZB/WF1 mice. Overall, the systemic organ/tissue exposures to P-Dex and Dex released from P-Dex were found to be significantly higher than those of PEG-Dex. The high prodrug concentrations were sustained in kidney for only 24 h, which cannot explain their lasting therapeutic efficacy (>1 month). P-Dex showed sustained presence in liver, spleen and adrenal gland, while the presence of PEG-Dex in these organs was transient. This difference in PK/BD profiles may explain PEG-Dex' superior safety than P-Dex.


Asunto(s)
Dexametasona/química , Nefritis Lúpica/tratamiento farmacológico , Nanopartículas/química , Polímeros/farmacología , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacología , Animales , Dexametasona/farmacología , Modelos Animales de Enfermedad , Humanos , Riñón/efectos de los fármacos , Nefritis Lúpica/patología , Ratones , Ratones Endogámicos NZB , Nanomedicina , Polímeros/química , Profármacos/química , Profármacos/farmacología , Bazo/efectos de los fármacos , Distribución Tisular/efectos de los fármacos
6.
J Antimicrob Chemother ; 74(10): 2974-2978, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31335938

RESUMEN

BACKGROUND: The secondary lymphoid tissues (LTs), lymph nodes (LNs) and gut-associated lymphoid tissue (GALT) are considered reservoirs for HIV. Antiretrovirals (ARVs) have lower penetration into LT. In vitro models predictive of ARV LT penetration have not been established. OBJECTIVES: To develop an in vitro model of LT bioavailability using human lymphoid endothelial cells (HLECs) and investigate its predictability with in vivo pharmacokinetic (PK) studies in mice. METHODS: ARV bioavailability in HLECs was evaluated at the maximum plasma concentration (Cmax) observed in HIV-infected patients. ARVs were: abacavir, atazanavir, darunavir, dolutegravir, efavirenz, elvitegravir, emtricitabine, maraviroc, raltegravir, rilpivirine, ritonavir, tenofovir disoproxil fumarate and the PK booster cobicistat. The LT PK of representative drugs showing high (efavirenz), intermediate (dolutegravir) and low (emtricitabine) HLEC bioavailability was investigated in BALB/c mice given 50/10/30 mg/kg efavirenz/dolutegravir/emtricitabine orally, daily for 3 days. The concordance of in vitro and in vivo ARV bioavailability was examined. RESULTS: ARVs showed high (>67th percentile; rilpivirine, efavirenz, elvitegravir and cobicistat), intermediate (67th-33rd percentile; ritonavir, tenofovir disoproxil fumarate, dolutegravir and maraviroc) and low (<33rd percentile; atazanavir, darunavir, raltegravir, emtricitabine and abacavir) HLEC bioavailability. The hierarchy of efavirenz, dolutegravir and emtricitabine bioavailability in LN, gut and brain tissues of mice was: efavirenz>dolutegravir>emtricitabine. CONCLUSIONS: ARVs displayed distinct HLEC penetration patterns. PK studies of representative ARVs in LT of mice were concordant with HLEC bioavailability. These findings support further development of this approach and its translational predictability in humans.


Asunto(s)
Antirretrovirales/farmacocinética , Células Endoteliales/metabolismo , Tejido Linfoide/metabolismo , Animales , Antirretrovirales/farmacología , Disponibilidad Biológica , Células Cultivadas , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
7.
Bioorg Med Chem Lett ; 29(6): 791-796, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718161

RESUMEN

The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.


Asunto(s)
Acetamidas/farmacología , Descubrimiento de Drogas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Pirazoles/farmacología , Tetrazoles/farmacología , Acetamidas/síntesis química , Acetamidas/química , Animales , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-29061742

RESUMEN

A nanoformulated myristoylated dolutegravir prodrug (NMDTG) was prepared using good laboratory practice protocols. Intramuscular injection of NMDTG (118 ± 8 mg/ml, 25.5 mg of DTG equivalents/kg of body weight) to three rhesus macaques led to plasma DTG levels of 86 ± 12 and 28 ± 1 ng/ml on days 35 and 91, respectively. The NMDTG platform showed no significant adverse events. Further modification may further extend the drug's apparent half-life for human use.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Profármacos/farmacocinética , Animales , Preparaciones de Acción Retardada , Inhibidores de Integrasa VIH/administración & dosificación , Inhibidores de Integrasa VIH/sangre , Inhibidores de Integrasa VIH/farmacocinética , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/sangre , Inyecciones Intramusculares , Macaca mulatta , Masculino , Nanocompuestos/administración & dosificación , Oxazinas , Piperazinas , Profármacos/administración & dosificación , Profármacos/síntesis química , Piridonas
9.
J Appl Toxicol ; 38(10): 1336-1352, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845631

RESUMEN

One of the mechanisms of drug-induced liver injury (DILI) involves alterations in bile acid (BA) homeostasis and elimination, which encompass several metabolic pathways including hydroxylation, amidation, sulfation, glucuronidation and glutathione conjugation. Species differences in BA metabolism may play a major role in the failure of currently used in vitro and in vivo models to predict reliably the DILI during the early stages of drug discovery and development. We developed an in vitro cofactor-fortified liver S9 fraction model to compare the metabolic profiles of the four major BAs (cholic acid, chenodeoxycholic acid, lithocholic acid and ursodeoxycholic acid) between humans and several animal species. High- and low-resolution liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance imaging were used for the qualitative and quantitative analysis of BAs and their metabolites. Major species differences were found in the metabolism of BAs. Sulfation into 3-O-sulfates was a major pathway in human and chimpanzee (4.8%-52%) and it was a minor pathway in all other species (0.02%-14%). Amidation was primarily with glycine (62%-95%) in minipig and rabbit and it was primarily with taurine (43%-81%) in human, chimpanzee, dog, hamster, rat and mice. Hydroxylation was highest (13%-80%) in rat and mice followed by hamster, while it was lowest (1.6%-22%) in human, chimpanzee and minipig. C6-ß hydroxylation was predominant (65%-95%) in rat and mice, while it was at C6-α position in minipig (36%-97%). Glucuronidation was highest in dog (10%-56%), while it was a minor pathway in all other species (<12%). The relative contribution of the various pathways involved in BA metabolism in vitro were in agreement with the observed plasma and urinary BA profiles in vivo and were able to predict and quantify the species differences in BA metabolism. In general, overall, BA metabolism in chimpanzee is most similar to human, while BA metabolism in rats and mice is most dissimilar from human.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Citosol/metabolismo , Redes y Vías Metabólicas , Microsomas Hepáticos/metabolismo , Especificidad de la Especie , Animales , Perros , Humanos , Técnicas In Vitro , Macaca fascicularis , Macaca mulatta , Mesocricetus , Ratones Endogámicos C57BL , Pan troglodytes , Conejos , Ratas Sprague-Dawley , Porcinos
10.
J Appl Toxicol ; 38(10): 1323-1335, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29785833

RESUMEN

Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/orina , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Especificidad de la Especie , Animales , Perros , Evaluación Preclínica de Medicamentos , Humanos , Macaca fascicularis , Macaca mulatta , Mesocricetus , Ratones Endogámicos C57BL , Pan troglodytes , Conejos , Ratas Sprague-Dawley , Porcinos
11.
Biomed Chromatogr ; 32(3)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28975688

RESUMEN

The differences among individual eicosanoids in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual eicosanoids and their metabolites in serum, sputum and bronchial alveolar lavage fluid (BALF). Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 34 eicosanoids in human serum, sputum and BALF was developed and validated. This method is valid and sensitive with a limit of quantification ranging from 0.2 to 3 ng/mL for the various analytes, and has a large dynamic range (500 ng/mL) and a short run time (25 min). The intra- and inter-day accuracy and precision values met the acceptance criteria according to US Food and Drug Administration guidelines. Using this method, detailed eicosanoid profiles were quantified in serum, sputum and BALF from a pilot human study. In summary, a reliable and simple LC-MS/MS method to quantify major eicosanoids and their metabolites was developed and applied to quantify eicosanoids in human various fluids, demonstrating its suitability to assess eicosanoid biomarkers in human clinical trials.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , Cromatografía Liquida/métodos , Eicosanoides/análisis , Esputo/química , Espectrometría de Masas en Tándem/métodos , Eicosanoides/sangre , Eicosanoides/metabolismo , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
12.
Biomed Chromatogr ; 30(12): 2038-2043, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27352248

RESUMEN

The pharmacokinetic profile of 99/411, a novel anti-malarial drug, was established in rats (12 mg/kg of body weight) and monkeys (20 mg/kg of body weight). Following oral administration, the presence of 99/411 was rapidly determined in rat plasma, tissues, urine, feces and monkey plasma using a validated LC-MS/MS method. The tissue distribution studies in rats indicated that the drug was partially distributed in all major tissues and plasma, and peak concentration levels were achieved within 0.5-4 h. Area under the curve in different rat tissues and plasma was found in order of blood > lung > intestine > heart > muscle > brain > kidney > spleen > liver. The total recoveries (within 86 h) of 99/411 were <0.0017% and <0.08% in urine and feces, respectively. The peak plasma concentration was 3499 ng/mL in rats after ~2 h of oral administration and 697-767 ng/mL in monkeys after ~6 h of oral administration. No plasma accumulation was observed in both male and female monkeys, even after multiple dosing. The preclinical pharmacokinetic profile and tissue distribution data are expected to assist in future clinical explorations of 99/411 as a promising anti-malarial agent.


Asunto(s)
Antimaláricos/farmacocinética , Cromatografía Liquida/métodos , Compuestos Heterocíclicos/farmacocinética , Compuestos de Espiro/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Área Bajo la Curva , Macaca mulatta , Masculino , Ratas , Ratas Sprague-Dawley , Distribución Tisular
13.
J Antimicrob Chemother ; 70(6): 1788-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25691324

RESUMEN

OBJECTIVES: Praziquantel is the only drug available for the treatment of schistosomiasis and the state of the exhausted drug discovery pipeline is alarming. We restarted investigations on the abandoned antischistosomal Ro 13-3978, an aryl hydantoin discovered in the early 1980s by Hoffmann La-Roche. METHODS: Newly transformed schistosomula and adult Schistosoma mansoni were studied in the presence of Ro 13-3978 in vitro. The metabolic stability of Ro 13-3978 was determined in vitro using human and mouse liver S9 fractions. Dose-response relationship, stage specificity, hepatic shift and scanning electron microscopy studies were carried out in S. mansoni-infected mice. In addition, efficacy experiments were conducted in rodents infected with Echinostoma caproni and Fasciola hepatica as well as in S. mansoni-infected immunocompromised nude (Foxn1(nu)) mice. RESULTS: Ro 13-3978 showed minor in vitro activity and no damage to the tegument was found. No cytotoxicity was detected for Ro 13-3978. Ro 13-3978 was metabolically stable. ED50 values of 138.9 and 14.6 mg/kg were calculated for the treatment of juvenile and adult S. mansoni infections, respectively, with a single oral dose of Ro 13-3978. SEM studies revealed severe damage to the worms 48 h post-treatment of infected mice. A single oral dose of Ro 13-3978 (100 mg/kg) administered to S. mansoni-infected (Foxn1(nu)) mice reduced the worm burden by 88%. Ro 13-3978 was not active against E. caproni and F. hepatica in vivo. CONCLUSIONS: Ro 13-3978 has excellent antischistosomal properties in vivo. Structure-activity relationship studies with the aryl hydantoins have been launched in order to elucidate active pharmacophores, further investigate the mechanism of action and to identify a derivative with minimal antiandrogenic effects.


Asunto(s)
Antihelmínticos/farmacología , Hidantoínas/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Antihelmínticos/administración & dosificación , Modelos Animales de Enfermedad , Echinostoma/efectos de los fármacos , Echinostoma/ultraestructura , Equinostomiasis/tratamiento farmacológico , Equinostomiasis/parasitología , Fasciola hepatica/efectos de los fármacos , Fasciola hepatica/ultraestructura , Fascioliasis/tratamiento farmacológico , Fascioliasis/parasitología , Femenino , Hidantoínas/administración & dosificación , Ratones , Microscopía Electrónica de Transmisión , Ratas , Schistosoma mansoni/ultraestructura , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Relación Estructura-Actividad , Resultado del Tratamiento
14.
Brain Behav Immun ; 50: 249-258, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26218293

RESUMEN

Both genetic and environmental factors are thought to contribute to neurodevelopmental and neuropsychiatric disorders with maternal immune activation (MIA) being a risk factor for both autism spectrum disorders and schizophrenia. Although MIA mouse offspring exhibit behavioral impairments, the synaptic alterations in vivo that mediate these behaviors are not known. Here we employed in vivo multiphoton imaging to determine that in the cortex of young MIA offspring there is a reduction in number and turnover rates of dendritic spines, sites of majority of excitatory synaptic inputs. Significantly, spine impairments persisted into adulthood and correlated with increased repetitive behavior, an ASD relevant behavioral phenotype. Structural analysis of synaptic inputs revealed a reorganization of presynaptic inputs with a larger proportion of spines being contacted by both excitatory and inhibitory presynaptic terminals. These structural impairments were accompanied by altered excitatory and inhibitory synaptic transmission. Finally, we report that a postnatal treatment of MIA offspring with the anti-inflammatory drug ibudilast, prevented both synaptic and behavioral impairments. Our results suggest that a possible altered inflammatory state associated with maternal immune activation results in impaired synaptic development that persists into adulthood but which can be prevented with early anti-inflammatory treatment.


Asunto(s)
Espinas Dendríticas/inmunología , Intercambio Materno-Fetal , Trastornos del Neurodesarrollo/inmunología , Sinapsis/inmunología , Animales , Antiinflamatorios/farmacología , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Femenino , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/etiología , Neuronas/efectos de los fármacos , Neuronas/inmunología , Embarazo , Piridinas/farmacología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/inmunología , Sinapsis/efectos de los fármacos
15.
Pharm Res ; 32(3): 1028-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25223962

RESUMEN

PURPOSE: Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. METHODS: Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. RESULTS: X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. CONCLUSIONS: Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Reactivos de Enlaces Cruzados/química , Portadores de Fármacos , Etilenodiaminas/química , Poloxámero/química , Estilbenos/administración & dosificación , Administración Intravenosa , Animales , Antineoplásicos Fitogénicos/sangre , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Cultivadas , Química Farmacéutica , Relación Dosis-Respuesta a Droga , Estudios de Factibilidad , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos BALB C , Micelas , Solubilidad , Estilbenos/sangre , Estilbenos/química , Estilbenos/farmacocinética , Tecnología Farmacéutica/métodos
16.
Xenobiotica ; 45(10): 858-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25869245

RESUMEN

1. We investigated the mechanisms responsible for the in vivo instability of a benzofurazan compound BI-94 (NSC228148) with potent anti-cancer activity. 2. BI-94 was stable in MeOH, water, and in various buffers at pHs 2.5-5, regardless of the buffer composition. In contrast, BI-94 was unstable in NaOH and at pHs 7-9, regardless of the buffer composition. BI-94 disappeared immediately after spiking into mice, rat, monkey, and human plasma. BI-94 stability in plasma can be only partially restored by acidifying it, which indicated other mechanisms in addition to pH for BI-94 instability in plasma. 3. BI-94 formed adducts with the trapping agents, glutathione (GSH) and N-acetylcysteine (NAC), in vivo and in vitro via nucleophilic aromatic substitution reaction. The kinetics of adduct formation showed that neutral or physiological pHs enhanced and accelerated GSH and NAC adduct formation with BI-94, whereas acidic pHs prevented it. Therefore, physiological pHs not only altered BI-94 chemical stability but also enhanced adduct formation with endogenous nucleophiles. In addition, adduct formation with human serum albumin-peptide 3 (HSA-T3) at the Cys34 position was demonstrated. 4. In conclusion, BI-94 was unstable at physiological conditions due to chemical instability and irreversible binding to plasma proteins.


Asunto(s)
Antineoplásicos/farmacocinética , Proteínas Sanguíneas/metabolismo , Oxadiazoles/metabolismo , Sulfonas/metabolismo , Acetilcisteína/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Estabilidad de Medicamentos , Glutatión/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Albúmina Sérica/metabolismo , Espectrometría de Masas en Tándem
17.
Antimicrob Agents Chemother ; 58(12): 7510-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288084

RESUMEN

The drug delivery platform for folic acid (FA)-coated nanoformulated ritonavir (RTV)-boosted atazanavir (FA-nanoATV/r) using poloxamer 407 was developed to enhance cell and tissue targeting for a range of antiretroviral drugs. Such formulations would serve to extend the drug half-life while improving the pharmacokinetic profile and biodistribution to reservoirs of human immunodeficiency virus (HIV) infection. To this end, we now report enhanced pharmacokinetics and drug biodistribution with limited local and systemic toxicities of this novel nanoformulation. The use of FA as a targeting ligand for nanoATV/r resulted in plasma and tissue drug concentrations up to 200-fold higher compared to equimolar doses of native drug. In addition, ATV and RTV concentrations in plasma from mice on a folate-deficient diet were up to 23-fold higher for mice administered FA-nanoATV/r than for mice on a normal diet. Compared to earlier nanoATV/r formulations, FA-nanoATV/r resulted in enhanced and sustained plasma and tissue ATV concentrations. In a drug interaction study, ATV plasma and tissue concentrations were up to 5-fold higher in mice treated with FA-nanoATV/r than in mice treated with FA-nanoATV alone. As observed in mice, enhanced and sustained plasma concentrations of ATV were observed in monkeys. NanoATV/r was associated with transient local inflammation at the site of injection. There were no systemic adverse reactions associated with up to 10 weeks of chronic exposure of mice or monkeys to FA-nanoATV/r.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Portadores de Fármacos/farmacocinética , Ácido Fólico/química , Nanoestructuras , Oligopéptidos/farmacocinética , Piridinas/farmacocinética , Ritonavir/farmacocinética , Animales , Fármacos Anti-VIH/sangre , Sulfato de Atazanavir , Esquema de Medicación , Portadores de Fármacos/química , Composición de Medicamentos , Evaluación Preclínica de Medicamentos , Ácido Fólico/metabolismo , Alimentos Formulados , Semivida , Humanos , Inyecciones Intramusculares , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Nanoestructuras/química , Oligopéptidos/sangre , Poloxámero/química , Piridinas/sangre , Ritonavir/sangre , Distribución Tisular
18.
Antimicrob Agents Chemother ; 57(7): 3110-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23612193

RESUMEN

Long-acting injectable nanoformulated antiretroviral therapy (nanoART) was developed with the explicit goal of improving medicine compliance and for drug targeting of viral tissue reservoirs. Prior nanoART studies completed in humanized virus-infected mice demonstrated sustained antiretroviral responses. However, the pharmacokinetics (PK) and tissue distribution of nanoART were not characterized. To this end, the PK and tissue distribution of nanoformulated atazanavir (ATV) and ritonavir (RTV) injected subcutaneously or intramuscularly in mice and monkeys were evaluated. Fourteen days after injection, ATV and RTV levels were up to 13-, 41-, and 4,500-fold higher than those resulting from native-drug administration in plasma, tissues, and at the site of injection, respectively. At nanoART doses of 10, 50, 100, and 250 mg/kg of body weight, relationships of more- and less-than-proportional increases in plasma and tissue levels with dose increases were demonstrated with ATV and RTV. Multiple-dose regimens showed serum and tissue concentrations up to 270-fold higher than native-drug concentrations throughout 8 weeks of study. Importantly, nanoART was localized in nonlysosomal compartments in tissue macrophages, creating intracellular depot sites. Reflective data were obtained in representative rhesus macaque studies. We conclude that nanoART demonstrates blood and tissue antiretroviral drug levels that are enhanced compared to those of native drugs. The sustained and enhanced PK profile of nanoART is, at least in part, the result of the sustained release of ATV and RTV from tissue macrophases and at the site of injection.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Inhibidores de la Proteasa del VIH/farmacocinética , Oligopéptidos/farmacocinética , Piridinas/farmacocinética , Ritonavir/farmacocinética , Animales , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/sangre , Terapia Antirretroviral Altamente Activa , Sulfato de Atazanavir , Esquema de Medicación , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Inhibidores de la Proteasa del VIH/administración & dosificación , Inhibidores de la Proteasa del VIH/sangre , Macaca mulatta , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/administración & dosificación , Oligopéptidos/sangre , Piridinas/administración & dosificación , Piridinas/sangre , Ritonavir/administración & dosificación , Ritonavir/sangre , Distribución Tisular
19.
Biomed Chromatogr ; 27(7): 900-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23483555

RESUMEN

13-197 is a novel NF-κB inhibitor that shows promising in vitro efficacy data against pancreatic cancer. In this study, we characterized the pharmacokinetics, tissue distribution, protein binding and metabolism of 13-197 in mice and rats. A valid, sensitive and selective LC-MS/MS method was developed. This method was validated for the quantification of 13-197, in the range of 0.1 or 0.2-500 ng/mL in mouse plasma, liver, kidney, lung, heart, spleen, brain, urine and feces. 13-197 has low bioavailability of 3 and 16% in mice and rats, respectively. It has faster absorption in mice with 12-fold shorter Tmax than in rats. Tissue concentrations were 1.3-69.2-fold higher in mice than in rats at 72 h after intravenous administration. 13-197 is well distributed to the peripheral tissues and has relatively high tissue-plasma concentration ratios, ranging from 1.8 to 3634, in both mice and rats. It also demonstrated more than 99% binding to plasma proteins in both mice and rats. Finally, <1% of 13-197 is excreted unchanged in urine and feces, and metabolite profiling studies detected more than 20 metabolites in mouse and rat plasma, urine and feces, which indicates that 13-197 is extensively metabolized and primarily eliminated by metabolism rather than by excretion.


Asunto(s)
Cromatografía Liquida/métodos , FN-kappa B/antagonistas & inhibidores , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/farmacocinética , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Heces/química , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos BALB C , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/análisis , Unión Proteica , Quinoxalinas/administración & dosificación , Quinoxalinas/análisis , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
20.
Anal Chim Acta ; 1198: 339512, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35190119

RESUMEN

There are several challenges associated with LC-MS/MS bioanalytical method development and validation. Low and variable recovery of some analytes, especially the more hydrophobic ones, is often challenging. Analytes can be lost to various extents throughout the process of sample collection, storage, before, during, and/or after sample preparation and analysis. The calculation of overall extraction recovery can detect problems of low recovery during sample preparation but does not identify the source(s) of analyte losses. Low overall analyte recovery is the net result of losses that can happen for multiple reasons at all steps of sample preparation and analysis. Therefore, identifying the source(s) of analyte loss during sample preparation can help guide the optimization the bioanalysis conditions to minimize these losses. In this article we propose a practical protocol to systematically identify and quantify the sources of low analyte recovery. This allows the proper choice of strategies to optimize the relevant bioanalytical conditions to minimize analyte losses and improve overall recovery.


Asunto(s)
Manejo de Especímenes , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA