Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291337

RESUMEN

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Asunto(s)
Metilación de ADN , Cara/anomalías , Heterocromatina , Enfermedades de Inmunodeficiencia Primaria , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Mutación , Mamíferos/genética , Mamíferos/metabolismo
2.
Reg Anesth Pain Med ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925712

RESUMEN

BACKGROUND: Current understanding of the mechanism of action of the pericapsular nerve group (PENG) block is primarily based on cadaver studies. We performed an imaging study in patients undergoing hip surgery to enhance the understanding of the analgesic mechanisms following a PENG block. MATERIALS AND METHODS: 10 patients scheduled for hip surgery received an ultrasound-guided PENG block with 18 mL of 0.5% ropivacaine mixed with 2 mL of a contrast agent. After completion of the block, a high-resolution CT scan was performed to obtain a three-dimensional reconstruction of the injectate's dispersion. RESULTS: The CT imaging revealed that injectate was mainly confined to the epimysium of the iliacus and the psoas muscle, with a minor spread to the hip capsule. Contrast dye was detected within the iliacus and/or the psoas muscle in all patients. No observed spread to either the subpectineal plane or the obturator foramen was detected. CONCLUSION: Our study suggests that the analgesic effect of the PENG block may be related to the block of the branches of the femoral nerve traveling within the iliopsoas muscle without a spread pattern commensurate with the block of the obturator nerve. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT06062134).

3.
Mol Ther Nucleic Acids ; 35(2): 102173, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617973

RESUMEN

Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.

4.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662826

RESUMEN

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Asunto(s)
Axonema , Centriolos , Cilios , Trastornos de la Motilidad Ciliar , Tubulina (Proteína) , Animales , Humanos , Ratones , Axonema/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Femenino , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA