Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mamm Genome ; 35(2): 122-134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523187

RESUMEN

Pruritus is a common irritating sensation that provokes the desire to scratch. Environmental and genetic factors contribute to the onset of pruritus. Moreover, itch can become a major burden when it becomes chronic. Interestingly, the rare Collagen VI alpha 5 (COL6A5) gene variant p.Glu2272* has been identified in two families and an independent patient with chronic neuropathic itch. These patients showed reduced COL6A5 expression in skin and normal skin morphology. However, little progress has been made until now toward understanding the relationships between this mutation and chronic itch. Therefore, we developed the first mouse model that recapitulates COL6A5-p.Glu2272* mutation using the CRISPR-Cas technology and characterized this new mouse model. The mutant mRNA, measured by RT-ddPCR, was expressed at normal levels in dorsal root ganglia and was decreased in skin. The functional exploration showed effects of the mutation with some sex dysmorphology. Mutant mice had increased skin permeability. Elevated spontaneous scratching and grooming was detected in male and female mutants, with increased anxiety-like behavior in female mutants. These results suggest that the COL6A5-p.Glu2272* mutation found in patients contributes to chronic itch and induces in mice additional behavioral changes. The COL6A5-p.Glu2272* mouse model could elucidate the pathophysiological mechanisms underlying COL6A5 role in itch and help identify potential new therapeutic targets.


Asunto(s)
Colágeno Tipo VI , Modelos Animales de Enfermedad , Mutación , Prurito , Animales , Ratones , Prurito/genética , Prurito/patología , Femenino , Masculino , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Piel/patología , Piel/metabolismo , Enfermedad Crónica , Humanos , Sistemas CRISPR-Cas
2.
BMC Bioinformatics ; 24(1): 28, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703114

RESUMEN

BACKGROUND: In individuals or animals suffering from genetic or acquired diseases, it is important to identify which clinical or phenotypic variables can be used to discriminate between disease and non-disease states, the response to treatments or sexual dimorphism. However, the data often suffers from low number of samples, high number of variables or unbalanced experimental designs. Moreover, several parameters can be recorded in the same test. Thus, correlations should be assessed, and a more complex statistical framework is necessary for the analysis. Packages already exist that provide analysis tools, but they are not found together, rendering the decision method and implementation difficult for non-statisticians. RESULT: We present Gdaphen, a fast joint-pipeline allowing the identification of most important qualitative and quantitative predictor variables to discriminate between genotypes, treatments, or sex. Gdaphen takes as input behavioral/clinical data and uses a Multiple Factor Analysis (MFA) to deal with groups of variables recorded from the same individuals or anonymize genotype-based recordings. Gdaphen uses as optimized input the non-correlated variables with 30% correlation or higher on the MFA-Principal Component Analysis (PCA), increasing the discriminative power and the classifier's predictive model efficiency. Gdaphen can determine the strongest variables that predict gene dosage effects thanks to the General Linear Model (GLM)-based classifiers or determine the most discriminative not linear distributed variables thanks to Random Forest (RF) implementation. Moreover, Gdaphen provides the efficacy of each classifier and several visualization options to fully understand and support the results as easily readable plots ready to be included in publications. We demonstrate Gdaphen capabilities on several datasets and provide easily followable vignettes. CONCLUSIONS: Gdaphen makes the analysis of phenotypic data much easier for medical or preclinical behavioral researchers, providing an integrated framework to perform: (1) pre-processing steps as data imputation or anonymization; (2) a full statistical assessment to identify which variables are the most important discriminators; and (3) state of the art visualizations ready for publication to support the conclusions of the analyses. Gdaphen is open-source and freely available at https://github.com/munizmom/gdaphen , together with vignettes, documentation for the functions and examples to guide you in each own implementation.


Asunto(s)
Bosques Aleatorios , Animales , Genotipo , Modelos Lineales
3.
J Neuroinflammation ; 19(1): 7, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991641

RESUMEN

BACKGROUND: Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS: The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS: Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION: The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.


Asunto(s)
Colitis/metabolismo , Mucosa Intestinal/metabolismo , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Dolor Visceral/metabolismo , Analgesia , Animales , Colitis/genética , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Receptores Opioides delta/genética , Dolor Visceral/genética
4.
J Neurosci Res ; 100(1): 203-219, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32253777

RESUMEN

A major challenge in medicine is developing potent pain therapies without the adverse effects of opiates. Neuroinflammation and in particular microglial activation have been shown to contribute to these effects. However, the implication of the microglial mu opioid receptor (MOR) is not known. We developed a novel conditional knockout (cKO) mouse line, wherein MOR is deleted in microglia. Morphine analgesic tolerance was delayed in both sexes in cKO mice in the hot plate assay. Opioid-induced hyperalgesia (OIH) as measured in the tail immersion assay was abolished in male cKO mice, and physical dependence to morphine as assessed by naloxone-induced withdrawal was attenuated in female cKO mice. Our results show a sex-dependent contribution of microglial MOR in morphine analgesic tolerance, OIH, and physical dependence. In conclusion, our data suggest that blockade of microglial MOR could represent a therapeutic target for opiate analgesia without the opiate adverse effects.


Asunto(s)
Morfina , Receptores Opioides mu , Analgésicos , Analgésicos Opioides/efectos adversos , Animales , Femenino , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Microglía , Morfina/efectos adversos , Receptores Opioides mu/genética
5.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671662

RESUMEN

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Asunto(s)
Encéfalo/fisiología , Conectoma , Eliminación de Gen , Receptores Opioides mu/genética , Recompensa , Animales , Mapeo Encefálico/métodos , Conectoma/métodos , Imagen de Difusión Tensora , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Modelos Neurológicos , Receptores Opioides mu/metabolismo
6.
Eur J Neurosci ; 48(5): 2231-2246, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30059180

RESUMEN

Peripheral delta opioid (DOP) receptors are essential for the antiallodynic effect of the tricyclic antidepressant nortriptyline. However, the population of DOP-expressing cells affected in neuropathic conditions or underlying the antiallodynic activity of antidepressants remains unknown. Using a mouse line in which DOP receptors were selectively ablated in cells expressing Nav1.8 sodium channels (DOP cKO), we established that these DOP peripheral receptors were mandatory for duloxetine to alleviate mechanical allodynia in a neuropathic pain model based on sciatic nerve cuffing. We then examined the impact of nerve cuffing and duloxetine treatment on DOP-positive populations using a knock-in mouse line expressing a fluorescent version of the DOP receptor fused with the enhanced green fluorescent protein (DOPeGFP). Eight weeks postsurgery, we observed a reduced proportion of DOPeGFP-positive small peptidergic sensory neurons (calcitonin gene-related peptide (CGRP) positive) in dorsal root ganglia and a lower density of DOPeGFP-positive free nerve endings in the skin. These changes were not present in nerve-injured mice chronically treated with oral duloxetine. In addition, increased DOPeGFP translocation to the plasma membrane was observed in neuropathic conditions but not in duloxetine-treated neuropathic mice, which may represent an additional level of control of the neuronal activity by DOP receptors. Our results therefore established a parallel between changes in the expression profile of peripheral DOP receptors and mechanical allodynia induced by sciatic nerve cuffing.


Asunto(s)
Clorhidrato de Duloxetina/farmacología , Neuralgia/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Receptores Opioides delta/efectos de los fármacos , Animales , Antidepresivos Tricíclicos/farmacología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Ratones Transgénicos , Neuralgia/metabolismo , Nortriptilina/farmacología , Dimensión del Dolor/métodos , Receptores Opioides delta/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo
7.
Brain Behav Immun ; 57: 227-242, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27139929

RESUMEN

Opioids are the most powerful analgesics. As pain is driven by sensory transmission and opioid receptors couple to inhibitory G proteins, according to the classical concept, opioids alleviate pain by activating receptors on neurons and blocking the release of excitatory mediators (e.g., substance P). Here we show that analgesia can be mediated by opioid receptors in immune cells. We propose that activation of leukocyte opioid receptors leads to the secretion of opioid peptides Met-enkephalin, ß-endorphin and dynorphin A (1-17), which subsequently act at local neuronal receptors, to relieve pain. In a mouse model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve, exogenous agonists of δ-, µ- and κ-opioid receptors injected at the damaged nerve infiltrated by opioid peptide- and receptor-expressing leukocytes, produced analgesia, as assessed with von Frey filaments. The analgesia was attenuated by pharmacological or genetic inactivation of opioid peptides, and by leukocyte depletion. This decrease in analgesia was restored by the transfer of wild-type, but not opioid receptor-lacking leukocytes. Ex vivo, exogenous opioids triggered secretion of opioid peptides from wild-type immune cells isolated from damaged nerves, which was diminished by blockade of Gαi/o or Gßγ (but not Gαs) proteins, by chelator of intracellular (but not extracellular) Ca(2+), by blockers of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptors, and was partially attenuated by protein kinase C inhibitor. Similarly, the leukocyte depletion-induced decrease in exogenous opioid analgesia was re-established by transfer of immune cells ex vivo pretreated with extracellular Ca(2+) chelator, but was unaltered by leukocytes pretreated with intracellular Ca(2+) chelator or blockers of Gαi/o and Gßγ proteins. Thus, both ex vivo opioid peptide release and in vivo analgesia were mediated by leukocyte opioid receptors coupled to the Gαi/o-Gßγ protein-PLC-IP3 receptors-intracellular Ca(2+) pathway. Our findings suggest that opioid receptors in immune cells are important targets for the control of pathological pain.


Asunto(s)
Analgesia , Calcio/metabolismo , Leucocitos/metabolismo , Neuralgia/metabolismo , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Ratones , Neuralgia/tratamiento farmacológico , Receptores Opioides/agonistas , Método Simple Ciego
8.
J Pharmacol Exp Ther ; 342(3): 799-807, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22700431

RESUMEN

N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity at the receptor for the two drugs.


Asunto(s)
Benzamidas/farmacología , Benzopiranos/farmacología , Locomoción/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Receptores Opioides delta/metabolismo , Compuestos de Espiro/farmacología , Analgesia/métodos , Analgésicos Opioides/agonistas , Animales , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Dimensión del Dolor/métodos , Piperazinas/farmacología , Receptores Opioides delta/genética
9.
Front Mol Neurosci ; 15: 913990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769334

RESUMEN

The voltage-gated sodium channel Nav1.7 is encoded by SCN9A gene and plays a critical role in pain sensitivity. Several SCN9A gain-of-function (GOF) mutations have been found in patients with small fiber neuropathy (SFN) having chronic pain, including the R185H mutation. However, for most of these variants, their involvement in pain phenotype still needs to be experimentally elucidated. In order to delineate the impact of R185H mutation on pain sensitivity, we have established the Scn9a R185H mutant mouse model using the CRISPR/Cas9 technology. The Scn9a R185H mutant mice show no cellular alteration in the dorsal root ganglia (DRG) containing cell bodies of sensory neurons and no alteration of growth or global health state. Heterozygous and homozygous animals of both sexes were investigated for pain sensitivity. The mutant mice were more sensitive than the wild-type mice in the tail flick and hot plate tests, acetone, and von Frey tests for sensitivity to heat, cold, and touch, respectively, although with sexual dimorphic effects. The newly developed bioinformatic pipeline, Gdaphen is based on general linear model (GLM) and random forest (RF) classifiers as well as a multifactor analysis of mixed data and shows the qualitative and quantitative variables contributing the most to the pain phenotype. Using Gdaphen, tail flick, Hargreaves, hot plate, acetone, cold plate, and von Frey tests, sex and genotype were found to be contributing most to the pain phenotype. Importantly, the mutant animals displayed spontaneous pain as assessed in the conditioned place preference (CPP) assay. Altogether, our results indicate that Scn9a R185H mice show a pain phenotype, suggesting that the SCN9A R185H mutation identified in patients with SFN having chronic pain contributes to their symptoms. Therefore, we provide genetic evidence for the fact that this mutation in Nav1.7 channel plays an important role in nociception and in the pain experienced by patients with SFN who have this mutation. These findings should aid in exploring further pain treatments based on the Nav1.7 channel.

10.
Behav Pharmacol ; 22(5-6): 405-14, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21836459

RESUMEN

Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of δ receptor function in pain control. These include several novel δ agonists with potent analgesic properties, and genetic mouse models with targeted mutations in the δ opioid receptor gene. Also, recent findings have further documented the regulation of δ receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in-vivo research, and proposed mechanisms at molecular level, have tremendously increased our understanding of δ receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dolor/tratamiento farmacológico , Receptores Opioides delta/agonistas , Analgésicos Opioides/farmacología , Animales , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Humanos , Ratones , Mutación , Dolor/fisiopatología , Procesamiento Proteico-Postraduccional , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA