Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38848546

RESUMEN

Intracellular trafficking involves an intricate machinery of motor complexes including the dynein complex to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains as well as cytoplasmic light and intermediate chains have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy-chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders, and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies, and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross-River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of NDD manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging, and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.

2.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37580113

RESUMEN

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Humanos , Niño , Cuerpo Calloso , Facies , Mutación/genética , Fenotipo , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Síndrome , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
3.
Hum Genet ; 143(5): 649-666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538918

RESUMEN

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Asunto(s)
Genómica , Humanos , Genómica/métodos , Exoma/genética , Secuenciación del Exoma/métodos , Bases de Datos Genéticas , Pruebas Genéticas/métodos , Genoma Humano , Secuenciación Completa del Genoma/métodos , Fenotipo
4.
J Neuroophthalmol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324479

RESUMEN

ABSTRACT: A 19-year-old man presented with 3 years of gradually progressive, painless vision loss in both eyes. The ophthalmic examination showed bilateral diminished visual acuity, dyschromatopsia, and temporal optic nerve pallor. The neurological examination was consistent with a mild myelopathy with decreased pin-prick sensation starting at T6-T7 and descending through the lower extremities. Hyperreflexia was also present in the lower more than upper extremities. Infectious, inflammatory, and nutritional serum workup and cerebrospinal fluid analysis were both unrevealing. MRI of the brain and spinal cord showed abnormal T2 hyperintensity of the fornix, corpus callosum, optic nerves, and lateral columns of the cervical and thoracic spine, with diffusion restriction in the inferior-posterior corpus callosum and fornix. Biotinidase serum enzyme activity was tested and showed a decreased level of activity. Biotinidase gene testing showed a homozygous pathogenic variant, c.424C>A (p.P142T), confirming the diagnosis of biotinidase deficiency and prompting oral biotin supplementation. Three months after starting treatment, the patient's visual acuity, color vision, visual fields, and MRI spine abnormalities all improved significantly. Biotinidase deficiency is an important diagnostic consideration in patients with unexplained optic neuropathy and/or myelopathy.

5.
J Clin Immunol ; 42(5): 986-999, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344128

RESUMEN

PURPOSE: This is a functional characterization of a novel CYBA variant associated with normal DHR flow cytometry. Chronic granulomatous disease (CGD) is an inborn error of immunity characterized by recurrent bacterial and fungal infections and dysregulated inflammatory responses due to defective phagocytic cell function leading to the formation of granulomas. CGD patients have pathogenic variants in any of the five components of the phagocytic NADPH oxidase, which transfers electrons through the phagosomal membrane and produces superoxide upon bacterial uptake. Here, we report a pediatric female patient with a novel homozygous missense variant (c.293C > T, p.(Ser98Leu)) in CYBA, encoding the p22phox protein, associated with autosomal recessive CGD. METHODS AND RESULTS: The patient presented with severe recurrent pneumonia. Specific pathogens identified included Burkholderia and Serratia species suggesting neutrophil functional abnormalities; however, the dihydrorhodamine-1,2,3 (DHR) flow cytometric and cytochrome c reduction assays for neutrophil respiratory burst fell within the low side of the normal range. Western blot and flow cytometric analysis of individual NADPH oxidase components revealed reduced levels of p22phox and gp91phoxphox proteins. The pathological consequence of the p.Ser98Leu variant was further evaluated in heterologous expression systems, which confirmed reduced p22phox protein stability and oxidase activity. CONCLUSIONS: Although this patient did not exhibit all the classic features of CGD, such as granulomas and skin infections, she had recurrent pneumonias with oxidant-sensitive pathognomonic organisms, resulting in appropriate targeted CGD testing. This case emphasizes the need to contextually interpret laboratory data, especially using clinical findings to direct additional assessments including genetic analysis.


Asunto(s)
Enfermedad Granulomatosa Crónica , Niño , Femenino , Citometría de Flujo , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Humanos , Mutación/genética , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , Fagocitos
6.
Ann Neurol ; 90(3): 440-454, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34231919

RESUMEN

OBJECTIVE: Histology reveals that early active multiple sclerosis lesions can be classified into 3 main interindividually heterogeneous but intraindividually stable immunopathological patterns of active demyelination (patterns I-III). In patterns I and II, a T-cell- and macrophage-associated demyelination is suggested, with pattern II only showing signs of a humoral immune response. Pattern III is characterized by inflammatory lesions with an oligodendrocyte degeneration. Patterns suggest pathogenic heterogeneity, and we postulated that they have distinct magnetic resonance imaging (MRI) correlates that may serve as biomarkers. METHODS: We evaluated in an international collaborative retrospective cohort study the MRI lesion characteristics of 789 conventional prebiopsy and follow-up MRIs in relation to their histopathologically classified immunopathological patterns (n = 161 subjects) and lesion edge features (n = 112). RESULTS: A strong association of a ringlike enhancement and a hypointense T2-weighted (T2w) rim with patterns I and II, but not pattern III, was observed. Only a fraction of pattern III patients showed a ringlike enhancement, and this was always atypical. Ringlike enhancement and T2w rims colocalized, and ringlike enhancement showed a strong association with macrophage rims as shown by histology. A strong concordance of MRI lesion characteristics, meaning that different lesions showed the same features, was found when comparing biopsied and nonbiopsied lesions at a given time point, indicating lesion homogeneity within individual patients. INTERPRETATION: We provide robust evidence that MRI characteristics reflect specific morphological features of multiple sclerosis immunopatterns and that ringlike enhancement and T2w hypointense rims might serve as a valuable noninvasive biomarker to differentiate pathological patterns of demyelination. ANN NEUROL 2021;90:440-454.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/inmunología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/inmunología , Adulto , Encéfalo/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Estudios Retrospectivos
7.
Genet Med ; 23(2): 384-395, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33173220

RESUMEN

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Femenino , Genes Ligados a X , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Secuenciación del Exoma
8.
J Inherit Metab Dis ; 44(2): 502-514, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32677106

RESUMEN

BACKGROUND: (+)-Epicatechin (EPI) induces mitochondrial biogenesis and antioxidant metabolism in muscle fibers and neurons. We aimed to evaluate safety and efficacy of (+)-EPI in pediatric subjects with Friedreich's ataxia (FRDA). METHODS: This was a phase II, open-label, baseline-controlled single-center trial including 10 participants ages 10 to 22 with confirmed FA diagnosis. (+)-EPI was administered orally at 75 mg/d for 24 weeks, with escalation to 150 mg/d at 12 weeks for subjects not showing improvement of neuromuscular, neurological or cardiac endpoints. Neurological endpoints were change from baseline in Friedreich's Ataxia Rating Scale (FARS) and 8-m timed walk. Cardiac endpoints were changes from baseline in left ventricular (LV) structure and function by cardiac magnetic resonance imaging (MRI) and echocardiogram, changes in cardiac electrophysiology, and changes in biomarkers for heart failure and hypertrophy. RESULTS: Mean FARS/modified (m)FARS scores showed nonstatistically significant improvement by both group and individual analysis. FARS/mFARS scores improved in 5/9 subjects (56%), 8-m walk in 3/9 (33%), 9-peg hole test in 6/10 (60%). LV mass index by cardiac MRI was significantly reduced at 12 weeks (P = .045), and was improved in 7/10 (70%) subjects at 24 weeks. Mean LV ejection fraction was increased at 24 weeks (P = .008) compared to baseline. Mean maximal septal thickness by echocardiography was increased at 24 weeks (P = .031). There were no serious adverse events. CONCLUSION: (+)-EPI was well tolerated over 24 weeks at up to 150 mg/d. Improvement was observed in cardiac structure and function in subset of subjects with FRDA without statistically significant improvement in primary neurological outcomes. SYNOPSIS: A (+)-epicatechin showed improvement of cardiac function, nonsignificant reduction of FARS/mFARS scores, and sustained significant upregulation of muscle-regeneration biomarker follistatin.


Asunto(s)
Antioxidantes/administración & dosificación , Catequina/administración & dosificación , Ataxia de Friedreich/tratamiento farmacológico , Corazón/diagnóstico por imagen , Adolescente , Niño , Ecocardiografía , Femenino , Ataxia de Friedreich/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Caminata
9.
Genet Med ; 22(8): 1413-1417, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32366965

RESUMEN

PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Epilepsia/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Fenotipo , Secuenciación del Exoma
10.
Am J Kidney Dis ; 73(2): 273-277, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30309714

RESUMEN

In human kidney disease, mitochondrial ultrastructural damage has long been recognized. Although the extent to which such mitochondrial changes contribute to human kidney disease is uncertain, experimental studies clearly demonstrate that mitochondrial damage can instigate pathogenetic processes that drive ongoing kidney disease. Clinical credence for this experimentally based hypothesis is provided by the development of kidney disease in patients with primary mitochondrial disorders. In this regard, substantial interest surrounds the occurrence of kidney disease in primary mitochondrial cytopathies, a heterogeneous group of conditions in which mutations in mitochondrial DNA (mtDNA) or nuclear DNA impair the functionality of components of the mitochondrial respiratory chain. We describe a novel mtDNA mutation in a patient who developed chronic kidney disease. The patient exhibited mitochondrial abnormalities in both muscle and kidney, chronic tubulointerstitial changes, and recurrent episodes of rhabdomyolysis. We outline mechanisms that may underlie the occurrence of chronic kidney disease in the setting of this novel mtDNA mutation. We also underscore the need to consider in relevant kidney diseases the presence of an underlying mitochondrial cytopathy because the latter more commonly exists than is generally recognized.


Asunto(s)
ADN Mitocondrial/genética , Síndrome de Kearns-Sayre/genética , Miopatías Mitocondriales/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Rabdomiólisis/genética , Centros Médicos Académicos , Adulto , Biopsia con Aguja , Análisis Mutacional de ADN , Diagnóstico Diferencial , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Síndrome de Kearns-Sayre/patología , Masculino , Miopatías Mitocondriales/patología , Enfermedades Raras , Rabdomiólisis/patología , Medición de Riesgo
11.
J Biol Chem ; 292(9): 3866-3876, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28057753

RESUMEN

Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1 To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS.


Asunto(s)
Repetición de Anquirina , Anomalías Craneofaciales/genética , Cardiopatías Congénitas/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Secuencias de Aminoácidos , Trastorno del Espectro Autista/genética , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Femenino , Variación Genética , Genómica , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Fenotipo , Pliegue de Proteína , Espectrometría de Fluorescencia
12.
Am J Med Genet A ; 176(12): 2798-2802, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30345613

RESUMEN

Wolf-Hirschhorn syndrome (WHS) is a microdeletion syndrome characterized by distinctive facial features consisting of "Greek warrior helmet" appearance, prenatal and postnatal growth deficiency, developmental disability, and seizures. This disorder is caused by heterozygous deletions on chromosome 4p16.3 often identified by cytogenetic techniques. Many groups have attempted to identify the critical region within this deletion to establish which genes are responsible for WHS. Herein, clinical whole exome sequencing (WES) was performed on a child with developmental delays, mild facial dysmorphisms, short stature, failure to thrive, and microcephaly, and revealed a de novo frameshift variant, c.1676_1679del (p.Arg559Tfs*38), in WHSC1 (NSD2). While WHSC1 falls within the WHS critical region, individuals with only disruption of this gene have only recently been described in the literature. Loss-of-function de novo variations in WHSC1 were identified in large developmental delay, autism, diagnostic, and congenital cardiac cohorts, as well as recent case reports, suggesting that de novo loss-of-function WHSC1 variants may be related to disease. These findings, along with our patient suggest that loss-of-function variation in WHSC1 may lead to a mild form of Wolf-Hirschhorn syndrome, and also may suggest that the developmental delays, facial dysmorphisms, and short stature seen in WHS may be due to disruption of WHSC1 gene.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Insuficiencia de Crecimiento/diagnóstico , Insuficiencia de Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación con Pérdida de Función , Proteínas Represoras/genética , Preescolar , Análisis Citogenético , Femenino , Estudios de Asociación Genética , Genómica/métodos , Humanos , Linaje , Fenotipo , Secuenciación del Exoma , Síndrome de Wolf-Hirschhorn/diagnóstico , Síndrome de Wolf-Hirschhorn/genética
13.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050392

RESUMEN

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/genética , Epilepsia/diagnóstico , Canal de Potasio Kv.1.2/genética , Animales , Encefalopatías/complicaciones , Epilepsia/complicaciones , Epilepsia/genética , Estudios de Asociación Genética , Mutación , Oocitos/fisiología , Fenotipo , Xenopus
14.
Hum Mutat ; 38(10): 1365-1371, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28649782

RESUMEN

Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with varying degrees of intellectual disability. Two subjects have missense variants affecting highly conserved amino acid residues within the actin-like domain. Missense mutations in the homologous region in yeast actin were previously reported to be dominant lethal and were associated with impaired binding of the human ACTL6A to ß-actin and BRG1. A third subject has a splicing variant that creates an in-frame deletion. Our findings suggest that the variants identified in our subjects may have a deleterious effect on the function of the protein by disturbing the integrity of the BAF complex. Thus, ACTL6A gene mutation analysis should be considered in patients with intellectual disability, learning disabilities, or developmental language disorder.


Asunto(s)
Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Adolescente , Niño , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Exoma , Cara , Femenino , Deformidades Congénitas de la Mano/fisiopatología , Heterocigoto , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Micrognatismo/genética , Micrognatismo/fisiopatología , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genética
15.
Am J Med Genet A ; 173(5): 1328-1333, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28322501

RESUMEN

STAR syndrome is a rare X-linked dominant disorder characterized by toe Syndactyly, Telecanthus, Anogenital malformations, and Renal malformations, and is caused by loss-of-function variants in FAM58A. Our proband presented with the hallmark features of STAR syndrome, as well as some additional less typical features including tethered cord and hearing loss. The proband's mother and maternal half-sister had similar clinical histories, but had variability in phenotypic severity. Clinical whole exome sequencing revealed a novel pathogenic nonsense variant, c.651G>A (p.Trp217X; NM_152274), in FAM58A in the proband, mother, and maternal half-sister. This pedigree represents the 11-13th patients described with STAR syndrome and the third instance of familial inheritance. To our knowledge, this is the first occurrence of a nonsense variant in FAM58A described in individuals with STAR syndrome and the phenotype in this pedigree suggests that tethered cord and hearing loss are features of STAR syndrome.


Asunto(s)
Canal Anal/anomalías , Ciclinas/genética , Pérdida Auditiva/genética , Hipertelorismo/genética , Riñón/anomalías , Sindactilia/genética , Dedos del Pie/anomalías , Anomalías Urogenitales/genética , Canal Anal/fisiopatología , Secuencia de Bases , Codón sin Sentido , Exoma/genética , Femenino , Pérdida Auditiva/fisiopatología , Humanos , Hipertelorismo/fisiopatología , Riñón/fisiopatología , Masculino , Linaje , Sindactilia/fisiopatología , Dedos del Pie/fisiopatología , Anomalías Urogenitales/fisiopatología
16.
Am J Med Genet A ; 170(3): 670-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26842493

RESUMEN

We report on 19 individuals with a recurrent de novo c.607C>T mutation in PACS1. This specific mutation gives rise to a recognizable intellectual disability syndrome. There is a distinctive facial appearance (19/19), characterized by full and arched eyebrows, hypertelorism with downslanting palpebral fissures, long eye lashes, ptosis, low set and simple ears, bulbous nasal tip, wide mouth with downturned corners and a thin upper lip with an unusual "wavy" profile, flat philtrum, and diastema of the teeth. Intellectual disability, ranging from mild to moderate, was present in all. Hypotonia is common in infancy (8/19). Seizures are frequent (12/19) and respond well to anticonvulsive medication. Structural malformations are common, including heart (10/19), brain (12/16), eye (10/19), kidney (3/19), and cryptorchidism (6/12 males). Feeding dysfunction is presenting in infancy with failure to thrive (5/19), gastroesophageal reflux (6/19), and gastrostomy tube placement (4/19). There is persistence of oral motor dysfunction. We provide suggestions for clinical work-up and management and hope that the present study will facilitate clinical recognition of further cases.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Mutación Puntual , Convulsiones/genética , Proteínas de Transporte Vesicular/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/patología , Adolescente , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Facies , Insuficiencia de Crecimiento/diagnóstico , Insuficiencia de Crecimiento/tratamiento farmacológico , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Femenino , Expresión Génica , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Índice de Severidad de la Enfermedad , Síndrome , Adulto Joven
18.
J Neurol Neurosurg Psychiatry ; 85(11): 1265-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24604904

RESUMEN

BACKGROUND: Inherited polyneuropathies often go undiagnosed. We investigated whole exome sequencing (WES) in utility to identify the genetic causes of diverse forms of inherited polyneuropathies without genetic diagnosis. METHODS: WES was applied to 24 cases from 15 kindreds. These kindreds had earlier unsuccessful candidate gene testing and five probands were initially thought to have acquired neuropathy. We assessed the efficacy of WES in screening 74 known neuropathy genes and 5195 reported pathogenic mutations for hereditary motor and sensory neuropathy, distal hereditary motor neuropathy, hereditary sensory and autonomic neuropathy, complicated hereditary spastic paraplegia, and select hereditary metabolic neuropathies. RESULTS: Pathogenic mutations were identified in five kindreds: (1) ATL1-p.Val253Ile; (2) LITAF-p.Gly112Ser; (3) MFN2-p.Arg94Gln; (4) GARS-p.Ile334Phe; and (5) BSCL2-p.Ser 90Leu. Complexities in establishing inheritance, difficulties in selecting candidate genes and high cost of gene testing all hindered earlier gene discoveries. WES expanded the phenotypic spectrum of the identified known mutations. Possible causal mutations in known genes (SPTLC1, DCTN1, REEP1) were identified in three kindreds. In the remaining seven kindreds, multiple rare or novel variants were identified in novel genes not previously linked with neuropathy. Our results demonstrate an average sequencing depth of 140×, >98% coverage and >10× sequencing depth for 93% (range 89%-96%) of the diverse neuropathy genes and their known mutations. CONCLUSIONS: Diverse inherited neuropathy patients without genetic discovery by candidate gene testing have a favourable probability of receiving a genetic diagnosis by WES. Frequently, atypical phenotypes account for earlier failed candidate approaches, and WES is demonstrated to expand the clinical spectrum of known pathogenic mutations.


Asunto(s)
Exoma/genética , Polineuropatías/genética , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Femenino , Genes/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Polineuropatías/diagnóstico , Análisis de Secuencia de ADN/métodos , Adulto Joven
19.
Brain Commun ; 6(2): fcae041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434220

RESUMEN

Mitochondrial myopathies are frequently recognized in childhood as part of a broader multisystem disorder and often overlooked in adulthood. Herein, we describe the phenotypic and genotypic spectrum and long-term outcomes of mitochondrial myopathies diagnosed in adulthood, focusing on neuromuscular features, electrodiagnostic and myopathological findings and survival. We performed a retrospective chart review of adult patients diagnosed with mitochondrial myopathy at Mayo Clinic (2005-21). We identified 94 patients. Median time from symptom onset to diagnosis was 11 years (interquartile range 4-21 years). Median age at diagnosis was 48 years (32-63 years). Primary genetic defects were identified in mitochondrial DNA in 48 patients (10 with single large deletion, 38 with point mutations) and nuclear DNA in 29. Five patients had multiple mitochondrial DNA deletions or depletion without nuclear DNA variants. Twelve patients had histopathological features of mitochondrial myopathy without molecular diagnosis. The most common phenotypes included multisystem disorder (n = 30); mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (14); limb myopathy (13); chronic progressive external ophthalmoplegia (12); and chronic progressive external ophthalmoplegia-plus (12). Isolated skeletal muscle manifestations occurred in 27%. Sixty-nine per cent had CNS and 21% had cardiac involvement. Mutations most frequently involved MT-TL1 (27) and POLG (17); however, a wide spectrum of established and novel molecular defects, with overlapping phenotypes, was identified. Electrodiagnostic studies identified myopathy (77%), fibrillation potentials (27%) and axonal peripheral neuropathy (42%, most common with nuclear DNA variants). Among 42 muscle biopsies available, median percentage counts were highest for cytochrome C oxidase negative fibres (5.1%) then ragged blue (1.4%) and ragged red fibres (0.5%). Skeletal muscle weakness was mild and slowly progressive (decline in strength summated score of 0.01/year). Median time to gait assistance was 5.5 years from diagnosis and 17 years from symptom onset. Thirty patients died, with median survival of 33.4 years from symptom onset and 10.9 years from diagnosis. Median age at death was 55 years. Cardiac involvement was associated with increased mortality [hazard ratio 2.36 (1.05, 5.29)]. There was no difference in survival based on genotype or phenotype. Despite the wide phenotypic and genotypic spectrum, mitochondrial myopathies in adults share similar features with slowly progressive limb weakness, contrasting with common multiorgan involvement and high mortality.

20.
Neuroimage Clin ; 41: 103559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38147792

RESUMEN

Genetic mutations causative of frontotemporal lobar degeneration (FTLD) are highly predictive of a specific proteinopathy, but there exists substantial inter-individual variability in their patterns of network degeneration and clinical manifestations. We collected clinical and 18Fluorodeoxyglucose-positron emission tomography (FDG-PET) data from 39 patients with genetic FTLD, including 11 carrying the C9orf72 hexanucleotide expansion, 16 carrying a MAPT mutation and 12 carrying a GRN mutation. We performed a spectral covariance decomposition analysis between FDG-PET images to yield unbiased latent patterns reflective of whole brain patterns of metabolism ("eigenbrains" or EBs). We then conducted linear discriminant analyses (LDAs) to perform EB-based predictions of genetic mutation and predominant clinical phenotype (i.e., behavior/personality, language, asymptomatic). Five EBs were significant and explained 58.52 % of the covariance between FDG-PET images. EBs indicative of hypometabolism in left frontotemporal and temporo-parietal areas distinguished GRN mutation carriers from other genetic mutations and were associated with predominant language phenotypes. EBs indicative of hypometabolism in prefrontal and temporopolar areas with a right hemispheric predominance were mostly associated with predominant behavioral phenotypes and distinguished MAPT mutation carriers from other genetic mutations. The LDAs yielded accuracies of 79.5 % and 76.9 % in predicting genetic status and predominant clinical phenotype, respectively. A small number of EBs explained a high proportion of covariance in patterns of network degeneration across FTLD-related genetic mutations. These EBs contained biological information relevant to the variability in the pathophysiological and clinical aspects of genetic FTLD, and for offering valuable guidance in complex clinical decision-making, such as decisions related to genetic testing.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Fluorodesoxiglucosa F18 , Péptidos y Proteínas de Señalización Intercelular/genética , Progranulinas/genética , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Tomografía de Emisión de Positrones , Mutación/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA