Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; 18(28): e2107735, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35678091

RESUMEN

In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.


Asunto(s)
Cristalización , Iones , Solventes , Agua , Cristalización/métodos , Entropía , Iones/química , Soluciones/química , Solventes/química , Agua/química
2.
Langmuir ; 38(47): 14409-14421, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36367750

RESUMEN

We experimentally determined the characteristics and Langmuir parameters of the binding of calcium ions to different polycarboxylates. By using potentiometric titrations and isothermal titration calorimetry, the effects of side chain chemistry, pH value, and chain length were systematically investigated using the linear polymers poly(aspartic acid), poly(glutamic acid), and poly(acrylic acid). We demonstrate that for polymers with high polymerization degrees, the binding process is governed by higher-order effects, such as the change of apparent pKa of carboxyl groups, and contributions arising from the whole polymer chain while the chemistry of the monomer unit constituting the polymer plays a subordinate role. In addition, primary binding sites need to be present in the polymer, thus rendering the abundance and sequential arrangement of protonated and deprotonated groups important. The detection of higher-order effects contradicts the assumptions posed by the Langmuir model of noninteracting binding sites and puts a question mark on whether ion binding to polycarboxylates can be described using solely a Langmuir binding model. No single uniform mechanism fits all investigated systems, and the whole polymer chain, including terminal groups, needs to be considered for the interpretation of binding data. Therefore, one needs to be careful when explaining ion binding to polymers solely based on studies on monomers or oligomers.


Asunto(s)
Calcio , Polímeros , Peso Molecular , Polimerizacion , Polímeros/química , Iones , Concentración de Iones de Hidrógeno
3.
Faraday Discuss ; 235(0): 36-55, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35388817

RESUMEN

In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.


Asunto(s)
Carbonato de Calcio , Agua , Óxido de Deuterio/química , Isótopos , Solventes , Agua/química
4.
J Am Chem Soc ; 143(4): 1758-1762, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471507

RESUMEN

Biomineralization occurs in aqueous environments. Despite the ubiquity and relevance of CaCO3 biomineralization, the role of water in the biomineralization process has remained elusive. Here, we demonstrate that water reorganization accompanies CaCO3 biomineralization for sea urchin spine generation in a model system. Using surface-specific vibrational spectroscopy, we probe the water at the interface of the spine-associated protein during CaCO3 mineralization. Our results show that, while the protein structure remains unchanged, the structure of interfacial water is perturbed differently in the presence of both Ca2+ and CO32- compared to the addition of only Ca2+. This difference is attributed to the condensation of prenucleation mineral species. Our findings are consistent with a nonclassical mineralization pathway for sea urchin spine generation and highlight the importance of protein hydration in biomineralization.


Asunto(s)
Carbonato de Calcio/metabolismo , Minerales/metabolismo , Agua/química , Animales , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Proteínas/metabolismo , Erizos de Mar/metabolismo , Propiedades de Superficie
5.
Angew Chem Int Ed Engl ; 60(30): 16707-16713, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33973691

RESUMEN

Mechanistic pathways relevant to mineralization are not well-understood fundamentally, let alone in the context of their biological and geological environments. Through quantitative analysis of ion association at near-neutral pH, we identify the involvement of HCO3- ions in CaCO3 nucleation. Incorporation of HCO3- ions into the structure of amorphous intermediates is corroborated by solid-state nuclear magnetic resonance spectroscopy, complemented by quantum mechanical calculations and molecular dynamics simulations. We identify the roles of HCO3- ions as being through (i) competition for ion association during the formation of ion pairs and ion clusters prior to nucleation and (ii) incorporation as a significant structural component of amorphous mineral particles. The roles of HCO3- ions as active soluble species and structural constituents in CaCO3 formation are of fundamental importance and provide a basis for a better understanding of physiological and geological mineralization.

6.
Anal Chem ; 92(14): 9511-9515, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32551561

RESUMEN

The determination of solubility limits of compounds in water is unprecise and relies on certain prerequisites such as UV-vis absorption activity. In this study, we designed an experimental approach based on potentiometric titrations to determine solubility limits of various organic compounds by exploiting their pH-active carboxylic acid groups. By applying the law of mass action, utilizing a double-dosing method ensuring a constant compound concentration, it is possible to determine the intrinsic solubility limits, which are independent of the pH value. The derived equations enable the precise and fast determination of intrinsic solubility limits of organic compounds in aqueous solutions within 2-4 h. Moreover, it is shown how the pKa value can be determined based on titrations carried out at two different compound concentrations.

7.
Angew Chem Int Ed Engl ; 59(15): 6155-6159, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31943581

RESUMEN

Liquid-liquid phase separation (LLPS) is an intermediate step during the precipitation of calcium carbonate, and is assumed to play a key role in biomineralization processes. Here, we have developed a model where ion association thermodynamics in homogeneous phases determine the liquid-liquid miscibility gap of the aqueous calcium carbonate system, verified experimentally using potentiometric titrations, and kinetic studies based on stopped-flow ATR-FTIR spectroscopy. The proposed mechanism explains the variable solubilities of solid amorphous calcium carbonates, reconciling previously inconsistent literature values. Accounting for liquid-liquid amorphous polymorphism, the model also provides clues to the mechanism of polymorph selection. It is general and should be tested for systems other than calcium carbonate to provide a new perspective on the physical chemistry of LLPS mechanisms based on stable prenucleation clusters rather than un-/metastable fluctuations in biomineralization, and beyond.

8.
J Am Chem Soc ; 141(11): 4490-4504, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30753066

RESUMEN

"Non-classical" notions consider formation pathways of crystalline materials where larger species than monomeric chemical constituents, i.e., ions or single molecules, play crucial roles, which are not covered by the classical theories dating back to the 1870s and 1920s. Providing an outline of "non-classical" nucleation, we demonstrate that prenucleation clusters (PNCs) can lie on alternative pathways to phase separation, where the very event of demixing is primarily based on not the sizes of the species forming, as in the classical view, but their dynamics. Rationalizing, on the other hand, that precursors that can be analytically detected in pre-nucleation stages and that play a role in phase separation must be considered PNCs and cannot be explained by classical notions, we outline a variety of systems where PNCs are important. Indeed, in recent years, with the advent of "non-classical" theories, a primary focus of research concentrated on the fundamental understanding of oligomeric/polymeric and particulate species involved in nucleation and crystallization processes, respectively. At the same time, the near-to unfathomable potential of "non-classical" routes for the synthesis of inorganic functional materials slowly unfolds. An overview of recent developments in the fundamental and mechanistic understanding of "non-classical" nucleation and crystallization in this Perspective then allows us to map out the potential of cluster/particle-driven mineralization pathways to intrinsically tailor the properties of inorganic functional (hybrid) materials via structuration from the nano- to the mesoscale. This is of utter importance for the functionality and performance of materials, as it may even confer emergent properties such as self-healing. Biominerals-often formed via particle accretion mechanisms-demonstrate this impressively and thus can serve as a further source of inspiration how to exploit nonclassical crystallization routes for syntheses of structured and functional materials. These new avenues to synthetic approaches may finally provide a holistic material concept, in which fundamental chemistry and materials science synergistically alloy.

9.
J Am Chem Soc ; 141(31): 12240-12245, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31321970

RESUMEN

Proteins controlling mineralization in vivo are diverse, suggesting that there are various ways by which mineralization can be directed in bioinspired approaches. While well-defined three-dimensional (3D) structures occur in biomineralization proteins, the design of synthetic, soluble, bioinspired macromolecules with specific, reproducible, and predictable 3D arrangements of mineral-interacting functions poses an ultimate challenge. Thus, the question of how certain arrangements of such functions on protein surfaces influence mineralization and in what ways specific alterations subsequently affect this process remains elusive. Here we used genetically engineered ubiquitin (Ub) proteins in order to overcome the limitations of generic bioinspired additive systems. By advancing existing protocols, we introduced an unnatural amino acid and subsequently mineral-interacting functions via selective-pressure incorporation and click chemistry, respectively, without affecting the Ub secondary structure. Indeed, as-obtained Ub with three phosphate functions at defined positions shows unique effects based on a yet-unmatched capability toward the stabilization of a film of a dense liquid mineral phase visible even with the naked eye and its transformation into amorphous nanoparticles and afterward crystals with complex shapes. We thereby demonstrate that Ub designer proteins pose a unique new generation of crystallization additives where the 3D arrangement of mineral-interacting functions can be designed at will, promising their future use for programmable, target-oriented mineralization control.


Asunto(s)
Ingeniería de Proteínas , Ubiquitinas/química , Ubiquitinas/genética , Cristalización , Minerales/metabolismo , Ubiquitinas/metabolismo
10.
Chemistry ; 25(56): 13002-13007, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31273845

RESUMEN

Hematite (α-Fe2 O3 ) is thermodynamically stable under ambient conditions, of vast geological importance, and widely used in applications, for example, as corrosion protection and as a pigment. It forms at elevated temperatures, whereas room-temperature reactions typically yield metastable akaganéite or ferrihydrite. The mechanistic key changes underlying this observation were explored in the present study. The entropic contribution to the prenucleation hydrolysis reaction categorically implies the presence of prenucleation clusters (PNCs) as fundamental precursors. The formation of hematite is then due to a change in the reaction mechanism above approximately 50 °C, whereby the reaction limitation towards oxolation in phase-separated clusters is overcome. A model that rationalizes the occurrence of hematite, akaganéite, and ferrihydrite based on the chemistry of olation PNCs is proposed. Supersaturation and the temperature dependence of olation and oxolation rates from monomeric precursors are irrelevant in this nonclassical mechanism.

11.
Angew Chem Int Ed Engl ; 58(52): 19103-19109, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31556970

RESUMEN

The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid-liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid-liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.


Asunto(s)
Ibuprofeno/química , Termodinámica
12.
Biochemistry ; 57(18): 2657-2666, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29620882

RESUMEN

In the nacre layer of the Pinctada fucata oyster shell there exists a multimember proteome, known as the framework family, which regulates the formation of the aragonite mesoscale tablets and participates in the creation of an organic coating around each tablet. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights we have created a proportionally defined combinatorial model consisting of two recombinant framework proteins, r-Pif97 (containing a von Willebrand Factor Type A domain (vWA)) and r-n16.3 (containing an EGF-like domain), whose individual in vitro mineralization functionalities are distinct from one another. We find that at 1:1 molar ratios r-Pif97 and r-n16.3 exhibit little or no synergistic activity regarding modifying existing calcite crystals. However, during the early stages of nucleation in solution, we note synergistic effects on nucleation kinetics and ACC formation/stability (via dehydration) that are not observed for the individual proteins. This selective synergism is generated by Ca2+-mediated protein-protein interactions (∼4 molecules of r-n16.3 per 1 molecule of r-Pif97) which lead to the formation of nucleation-responsive hybrid hydrogel particles in solution. Interestingly, in the absence of Ca2+ there are no significant interactions occurring between the two proteins. This unique behavior of the framework-associated n16.3 and Pif97 proteins suggests that the Asp/Glu-containing regions of the vWA and EGF-like domains may play a role in both nacre matrix formation and mineralization.


Asunto(s)
Familia de Proteínas EGF/química , Nácar/química , Pinctada/química , Factor de von Willebrand/química , Exoesqueleto/química , Animales , Carbonato de Calcio/química , Cristalización , Hidrogeles/química , Cinética , Nácar/genética , Pinctada/genética , Proteoma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Factor de von Willebrand/genética
13.
Biochemistry ; 56(21): 2663-2675, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28478667

RESUMEN

In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as SpSM50. However, because of its limited abundance and solubility issues, it has been difficult to pursue extensive in vitro biochemical studies of SpSM50 protein and deduce its role in spicule formation and mineralization. To circumvent these problems, we expressed a tag-free bacterial model recombinant spicule matrix protein, rSpSM50. Bioinformatics and biophysical experiments confirm that rSpSM50 is an intrinsically disordered, aggregation-prone C-type lectin-like domain-containing protein that forms dimensionally and internally heterogeneous protein hydrogels that control the in vitro mineralization process in three ways. The hydrogels (1) kinetically stabilize the aqueous calcium carbonate system against nucleation and thermodynamically destabilize the initially formed ACC in bulk solution, (2) promote and organize faceted single-crystal calcite and polycrystalline vaterite nanoparticles, and (3) promote surface texturing of calcite crystals and induce subsurface nanoporosities and channels within both calcite and vaterite crystals. Many of these features are also common to mollusk shell nacre proteins and the sea urchin spicule matrix glycoprotein, SpSM30B/C, and we conclude that rSpSM50 is a spiculogenesis hydrogelator protein that exhibits traits found in other calcium carbonate mineral-modification proteins.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas Recombinantes/metabolismo , Erizos de Mar/metabolismo , Animales , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Modelos Moleculares , Proteínas Recombinantes/química , Termodinámica
14.
Biochemistry ; 56(28): 3607-3618, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28649833

RESUMEN

In the nacre or aragonitic layer of an oyster pearl, there exists a 12-member proteome that regulates both the early stages of nucleation and nanoscale-to-mesoscale assembly of nacre tablets and calcitic crystals from mineral nanoparticle precursors. Several approaches to understanding protein-associated mechanisms of pearl nacre formation have been developed, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two pearl nacre-associated proteins, PFMG1 and PFMG2 (shell oyster pearl nacre, Pinctada fucata) whose individual in vitro mineralization functionalities are distinct from one another. Using scanning electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that at 1:1 molar ratios, rPFMG2 and rPFMG1 co-aggregate in specific molecular ratios to form hybrid hydrogels that affect both the early and later stages of in vitro calcium carbonate nucleation. Within these hybrid hydrogels, rPFMG2 plays a role in defining protein co-aggregation and hydrogel dimension, whereas rPFMG1 defines participation in nonclassical nucleation processes; both proteins exhibit synergy with regard to surface and subsurface modifications to existing crystals. The interactions between both proteins are enhanced by Ca(II) ions and may involve Ca(II)-induced conformational events within the EF-hand rPFMG1 protein, as well as putative interactions between the EF-hand domain of rPFMG1 and the calponin-like domain of rPFMG2. Thus, the pearl-associated PFMG1 and PFMG2 proteins interact and exhibit mineralization functionalities in specific ways, which may be relevant for pearl formation.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Nácar/metabolismo , Pinctada/metabolismo , Proteínas/metabolismo , Animales , Proteínas de Unión al Calcio/química , Cristalización , Motivos EF Hand , Proteínas de Microfilamentos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Modelos Moleculares , Pinctada/ultraestructura , Agregado de Proteínas , Dominios Proteicos , Proteínas/química , Calponinas
15.
J Struct Biol ; 199(1): 46-56, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28506935

RESUMEN

Gastroliths are highly calcified structures formed in the cardiac stomach wall of crustaceans for the temporary storage of amorphous CaCO3 (ACC). The gastrolithic ACC is stabilized by the presence of biomolecules, and represents a novel model for research into biomineralization. For the first time, an in vitro biomimetic retrosynthesis of scaffolds of gastrolithic matrices with CaCO3 is presented. With the help of synthetic polyacrylic (PAA) and phytic (PA) acids, amorphous precursor particles were stabilized in double (DD) and gas (GD) diffusion crystallization assays. The presence of these synthetic molecules as efficient inhibitors of nucleation and growth of CaCO3, and the use of biological gastrolith scaffolds as confined reaction environments determined the kinetics of crystallization, and controlled the morphogenesis of CaCO3. The formation of ACC particles was demonstrated and their crystallization was followed by light microscopy, scanning and transmission electron microscopy, and electron diffraction.


Asunto(s)
Biomimética/métodos , Calcificación Fisiológica , Carbonato de Calcio/química , Nephropidae/anatomía & histología , Animales , Cristalización , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
16.
Chemistry ; 23(57): 14128-14132, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28736825

RESUMEN

Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration.

18.
Angew Chem Int Ed Engl ; 56(14): 4042-4046, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28252244

RESUMEN

Despite numerous studies on the nucleation and crystallization of iron (oxyhydr)oxides, the roles of species developing during the early stages, especially primary clusters and intermediate amorphous particles, are still poorly understood. Herein, both ligand-free and ligand-protected amorphous iron oxide (AIO) clusters (<2 nm) were synthesized as precursors for magnetite formation. Thermal annealing can crystallize the clusters into magnetite particles, and AIO bulk phases with domains of pre-aligned clusters are found to be direct precursors to crystals, suggesting a non-classical aggregation-based pathway that differs from the reported oriented attachment or particle accretion mechanisms.

19.
Angew Chem Int Ed Engl ; 56(2): 490-495, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28029201

RESUMEN

Many phenomena depend on CaCO3 nucleation where the role of water remains enigmatic. Changes in THz absorption during the early stages of CaCO3 nucleation evidence altered coupled motions of hydrated calcium and carbonate ions. The direct link between these changes and the continuous development of the ion activity product reveals the locus of a liquid-liquid binodal limit. The data strongly suggest that proto-structured amorphous CaCO3 forms through solidification of initially liquid precursors. Furthermore, polycarboxylates, which stabilize liquid precursors of CaCO3 , significantly enhance the kinetic stability of the metastable liquid-liquid state, but they do not affect the locus of the binodal limit. The importance of water network dynamics in phase separation mechanisms can be understood based on the notions of the pre-nucleation cluster pathway, and is likely to be more general for aqueous systems.

20.
Chemphyschem ; 17(21): 3535-3541, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27540706

RESUMEN

The understanding of the molecular mechanisms underlying the early stages of crystallisation is still incomplete. In the case of calcium carbonate, experimental and computational evidence suggests that phase separation relies on so-called pre-nucleation clusters (PNCs). A thorough thermodynamic analysis of the enthalpic and entropic contributions to the overall free energy of PNC formation derived from three independent methods demonstrates that solute clustering is driven by entropy. This can be quantitatively rationalised by the release of water molecules from ion hydration layers, explaining why ion association is not limited to simple ion pairing. The key role of water release in this process suggests that PNC formation should be a common phenomenon in aqueous solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA