Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2307604120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523523

RESUMEN

In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.


Asunto(s)
Ascomicetos , Ascomicetos/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Ribonucleasa T1/genética , Ribonucleasa T1/metabolismo , Polimorfismo Genético , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
2.
FASEB J ; 37(1): e22717, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563024

RESUMEN

Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.


Asunto(s)
Proteína Morfogenética Ósea 7 , Glicosaminoglicanos , Proteína Morfogenética Ósea 7/metabolismo , Heparina/metabolismo , Fibrilina-1/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Morfogenéticas Óseas/metabolismo , Heparitina Sulfato/metabolismo , Unión Proteica , Proteína Morfogenética Ósea 2/metabolismo
3.
J Biol Chem ; 297(6): 101169, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487762

RESUMEN

Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.


Asunto(s)
Colágeno/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Colágeno/química , Cristalografía por Rayos X , Perros/metabolismo , Proteínas del Choque Térmico HSP47/química , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
4.
J Biol Chem ; 295(36): 12755-12771, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32719005

RESUMEN

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.


Asunto(s)
Colágeno Tipo VI/química , Enfermedades Musculares , Mutación , Colágeno Tipo VI/genética , Cristalografía por Rayos X , Humanos , Dominios Proteicos
5.
FASEB J ; 34(9): 12040-12052, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716577

RESUMEN

Although collagens are the most abundant proteins implicated in various disease pathways, essential mechanisms required for their proper folding and assembly are poorly understood. Heat-shock protein 47 (HSP47), an ER-resident chaperone, was mainly reported to fulfill key functions in folding and secretion of fibrillar collagens by stabilizing pro-collagen triple-helices. In this study, we demonstrate unique functions of HSP47 for different collagen subfamilies. Our results show that HSP47 binds to the N-terminal region of procollagen I and is essential for its secretion. However, HSP47 ablation does not majorly impact collagen VI secretion, but its lateral assembly. Moreover, specific ablation of Hsp47 in murine keratinocytes revealed a new role for the transmembrane collagen XVII triple-helix formation. Incompletely folded collagen XVII C-termini protruding from isolated HSP47 null keratinocyte membrane vesicles could be fully restored upon the application of recombinant HSP47. Thus, our study expands the current view regarding the client repertoire and function of HSP47, as well as emphasizes its importance for transmembrane collagen folding.


Asunto(s)
Proteínas del Choque Térmico HSP47/metabolismo , Queratinocitos/metabolismo , Procolágeno/metabolismo , Pliegue de Proteína , Animales , Proteínas del Choque Térmico HSP47/genética , Ratones , Procolágeno/genética
6.
Angew Chem Int Ed Engl ; 59(14): 5747-5755, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31944532

RESUMEN

Collagen model peptides (CMPs) serve as tools for understanding stability and function of the collagen triple helix and have a potential for biomedical applications. In the past, interstrand cross-linking or conformational preconditioning of proline units through stereoelectronic effects have been utilized in the design of stabilized CMPs. To further study the effects determining collagen triple helix stability we investigated a series of CMPs containing synthetic diproline-mimicking modules (ProMs), which were preorganized in a PPII-helix-type conformation by a functionalizable intrastrand C2 bridge. Results of CD-based denaturation studies were correlated with calculated (DFT) conformational preferences of the ProM units, revealing that the relative helix stability is mainly governed by an interplay of main-chain preorganization, ring-flip preference, adaptability, and steric effects. Triple helix integrity was proven by crystal structure analysis and binding to HSP47.


Asunto(s)
Colágeno/química , Péptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Conformación Molecular , Péptidos/síntesis química , Prolina/química , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Estereoisomerismo
7.
J Struct Biol ; 199(2): 132-139, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28602715

RESUMEN

Pigment epithelium derived factor (PEDF) is a multifunctional extracellular protein. In addition to its known anti-angiogenic and neurotrophic roles in collagen rich tissues, PEDF is thought to be involved in collagen fibril assembly due to its sequence specific binding to the collagen fibril and high expression in regions of active bone formation. In order to image the presence of the protein on the fibrils, PEDF was recombinantly made with a strep tag (strep-PEDF) and then gold nanoparticles conjugated to streptavidin (AuNP) were used as a secondary tag. The gold nanoparticles were detected using phase imaging in tapping mode AFM to image where exogenous PEDF bound in rabbit femur. These findings demonstrate that PEDF binds heterogeneously in cortical rabbit femur. Exogenous PEDF binding was concentrated at areas between microstructures with highly aligned collagen fibrils. Binding was not observed on or within the collagen fibrils themselves.


Asunto(s)
Colágeno Tipo I/metabolismo , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Animales , Sitios de Unión , Fémur/química , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Oro , Humanos , Nanopartículas del Metal , Microscopía de Fuerza Atómica/métodos , Unión Proteica , Conejos , Estreptavidina
8.
J Biol Chem ; 291(24): 12612-12626, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27129216

RESUMEN

Heat shock protein 47 (HSP47) is an endoplasmic reticulum (ER)-resident collagen-specific chaperone and essential for proper formation of the characteristic collagen triple helix. It preferentially binds to the folded conformation of its clients and accompanies them from the ER to the Golgi compartment, where it releases them and is recycled back to the ER. Unlike other chaperones, the binding and release cycles are not governed by nucleotide exchange and hydrolysis, but presumably the dissociation of the HSP47-procollagen complex is triggered by the lower pH in the Golgi (pH 6.3) compared with the ER (pH 7.4). Histidine residues have been suggested as triggers due to their approximate textbook pKa value of 6.1 for their side chains. We present here an extensive theoretical and experimental study of the 14 histidine residues present in canine HSP47, where we have mutated all histidine residues in the collagen binding interface and additionally all of those that were predicted to undergo a significant change in protonation state between pH 7 and 6. These mutants were characterized by biolayer interferometry for their pH-dependent binding to a collagen model. One mutant (H238N) loses binding, which can be explained by a rearrangement of the Arg(222) and Asp(385) residues, which are crucial for specific collagen recognition. Most of the other mutants were remarkably silent, but a double mutant with His(273) and His(274) exchanged for asparagines exhibits a much less pronounced pH dependence of collagen binding. This effect is mainly caused by a lower koff at the low pH values.


Asunto(s)
Colágeno/química , Proteínas del Choque Térmico HSP47/química , Histidina/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Colágeno/metabolismo , Perros , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Proteínas del Choque Térmico HSP47/clasificación , Proteínas del Choque Térmico HSP47/genética , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Filogenia , Unión Proteica , Desnaturalización Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Secuencias Repetitivas de Aminoácido/genética , Homología de Secuencia de Aminoácido
9.
Proc Natl Acad Sci U S A ; 109(33): 13243-7, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847422

RESUMEN

Collagen is the most abundant protein in animals and is a major component of the extracellular matrix in tissues such as skin and bone. A distinctive structural feature of all collagen types is a unique triple-helical structure formed by tandem repeats of the consensus sequence Xaa-Yaa-Gly, in which Xaa and Yaa frequently are proline and hydroxyproline, respectively. Hsp47/SERPINH1 is a procollagen-specific molecular chaperone that, unlike other chaperones, specifically recognizes the folded conformation of its client. Reduced functional levels of Hsp47 were reported in severe recessive forms of osteogenesis imperfecta, and homozygous knockout is lethal in mice. Here we present crystal structures of Hsp47 in its free form and in complex with homotrimeric synthetic collagen model peptides, each comprising one Hsp47-binding site represented by an arginine at the Yaa-position of a Xaa-Yaa-Gly triplet. Two of these three binding sites in the triple helix are occupied by Hsp47 molecules, which bind in a head-to-head fashion, thus making extensive contacts with the leading and trailing strands of the collagen triple helix. The important arginine residue within the Xaa-Arg-Gly triplet is recognized by a conserved aspartic acid. The structures explain the stabilization of the triple helix as well as the inhibition of collagen-bundle formation by Hsp47. In addition, we propose a pH-dependent substrate release mechanism based on a cluster of histidine residues.


Asunto(s)
Colágeno Tipo I/metabolismo , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Colágeno Tipo I/química , Perros , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Relación Estructura-Actividad , Especificidad por Sustrato
10.
PLoS Genet ; 6(4): e1000907, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20419147

RESUMEN

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteínas de la Matriz Extracelular/genética , Síndrome de Frasier/genética , Furina/genética , Mutación , Proproteína Convertasas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Matriz Extracelular/metabolismo , Furina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Proproteína Convertasas/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
FEBS Open Bio ; 10(4): 580-592, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32031736

RESUMEN

Type VII collagen is an extracellular matrix protein, which is important for skin stability; however, detailed information at the molecular level is scarce. The second vWFA (von Willebrand factor type A) domain of type VII collagen mediates important interactions, and immunization of mice induces skin blistering in certain strains. To understand vWFA2 function and the pathophysiological mechanisms leading to skin blistering, we structurally characterized this domain by X-ray crystallography and NMR spectroscopy. Cell adhesion assays identified two new interactions: one with ß1 integrin via its RGD motif and one with laminin-332. The latter interaction was confirmed by surface plasmon resonance with a KD of about 1 mm. These data show that vWFA2 has additional functions in the extracellular matrix besides interacting with type I collagen.


Asunto(s)
Colágeno Tipo VII/química , Colágeno Tipo VII/metabolismo , Dominios Proteicos , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Autoanticuerpos/inmunología , Sitios de Unión , Vesícula/inmunología , Vesícula/metabolismo , Adhesión Celular , Colágeno Tipo I/metabolismo , Epidermólisis Ampollosa Adquirida/inmunología , Epidermólisis Ampollosa Adquirida/metabolismo , Matriz Extracelular/metabolismo , Células HaCaT , Humanos , Integrina beta1/química , Integrina beta1/metabolismo , Laminina/metabolismo , Ratones , Unión Proteica , Dominios Proteicos/inmunología , Piel/metabolismo , Factor de von Willebrand/inmunología
12.
Matrix Biol Plus ; 1: 100001, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33543001

RESUMEN

Proteins are the building blocks of life. While proteins and their localization within cells and sub-cellular compartments are well defined, the proteins predicted to be secreted to form the extracellular matrix - or matrisome - remain elusive in the model organism C. elegans. Here, we used a bioinformatic approach combining gene orthology and protein structure analysis and an extensive curation of the literature to define the C. elegans matrisome. Similar to the human genome, we found that 719 out of ~20,000 genes (~4%) of the C. elegans genome encodes matrisome proteins, including 181 collagens, 35 glycoproteins, 10 proteoglycans, and 493 matrisome-associated proteins. We report that 173 out of the 181 collagen genes are unique to nematodes and are predicted to encode cuticular collagens, which we are proposing to group into five clusters. To facilitate the use of our lists and classification by the scientific community, we developed an automated annotation tool to identify ECM components in large datasets. We also established a novel database of all C. elegans collagens (CeColDB). Last, we provide examples of how the newly defined C. elegans matrisome can be used for annotations and gene ontology analyses of transcriptomic, proteomic, and RNAi screening data. Because C. elegans is a widely used model organism for high throughput genetic and drug screens, and to study biological and pathological processes, the conserved matrisome genes may aid in identifying potential drug targets. In addition, the nematode-specific matrisome may be exploited for targeting parasitic infection of man and crops.

13.
Sci Rep ; 8(1): 17187, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464261

RESUMEN

COMP (cartilage oligomeric matrix protein) is a member of the thrombospondin family and forms homopentamers as well as mixed heterooligomers with its closely related family member TSP-4. COMP is long known to bind to collagens and to influence collagen fibril formation. Recent work indicates that already intracellular interaction with collagen is important for collagen secretion. However, the exact binding site of COMP on the collagen triple helix has not been described up to now. In this study we have identified a GXKGHR motif on the collagen II helix to bind to COMP, using a recombinantly expressed collagen II peptide library. This binding sequence is conserved throughout evolution and we demonstrate that TSP-4 binds to the same sequence. The identified binding motif overlaps with the recognition sites of many other collagen-binding partners (e.g. PEDF, Heparin) and also spans the lysine residues, which form collagen cross-links. COMP might thereby protect collagen helices from premature modification and cross-linking. Interestingly, this motif is only found in classical fibrillar collagens, although COMP is known to also bind other types. This might indicate that COMP has a unique interface for fibrillar collagens, thus making it an interesting target for the development of antifibrotic drugs.


Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Colágenos Fibrilares/metabolismo , Mapeo de Interacción de Proteínas , Trombospondinas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Unión Proteica
14.
Matrix Biol ; 26(3): 167-74, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17156989

RESUMEN

The matrilins form a family of non-collagenous adaptor proteins in the extracellular matrix. The extracellular ligand interactions of matrilins have been studied in some detail, while the potential interplay between matrilins and cells has been largely neglected. Except for matrilin-4, all matrilins mediate cell attachment, but only for matrilin-1 and -3 the binding is clearly dose dependent and seen already at moderate coating concentrations. Even so, much higher concentrations of matrilin-1 or -3 than of fibronectin are required for cell attachment to reach plateau values. Integrins contribute to the matrilin-mediated cell attachment, but the binding does not lead to formation of focal contacts and reorganisation of the actin cytoskeleton. Cells deficient in beta1 integrins are able to adhere, although weaker, and matrilins do not bind the soluble integrin alpha1beta1 and alpha2beta1 ectodomains. Cell surface proteoglycans may promote the attachment, as cells deficient in glycosaminoglycan biosynthesis adhere less well to matrilin-3. Even so, exogenous glycosaminoglycans are not able to compete for the attachment of HaCaT cells to matrilins.


Asunto(s)
Adhesión Celular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Glicoproteínas/metabolismo , Animales , Proteína de la Matriz Oligomérica del Cartílago , Bovinos , Línea Celular , Condrocitos/citología , Condrocitos/metabolismo , Proteínas de la Matriz Extracelular/genética , Glicoproteínas/genética , Glicosaminoglicanos/metabolismo , Humanos , Integrina alfa1beta1/metabolismo , Integrina alfa2beta1/metabolismo , Proteínas Matrilinas
15.
Matrix Biol ; 49: 106-119, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26235539

RESUMEN

Collagen XXVIII is the last discovered member of the collagen superfamily and thus has been only sparsely investigated. We studied collagen XXVIII in zebrafish to gain insight into its structure, evolution and expression. In contrast to human and mouse, the zebrafish genome contains four collagen XXVIII genes, col28a1a and -b, and col28a2a and -b. Genomic context and phylogenetic analysis revealed that the a2 branch was lost during evolution of mammals, whereas the duplication of the a1 and a2 branches results from the whole genome duplication in the teleost lineage. Sequence analysis revealed conservation of domain structure and the unique imperfections in the triple helical domain. Two major forms of collagen XXVIII were identified, Col28a1b in adult and Col28a2a in 3-5dpf zebrafish. Composite agarose/polyacrylamide gel electrophoresis revealed that both these chains mainly form dimers of trimers, although Col28a1b appears to be more polydisperse. Homodimers are abundant, although it is possible that complexes consisting of Col28a2a and Col28a1a or -a2b occur. Peptide mass fingerprint analysis revealed that the C-terminal Kunitz domain is often proteolytically processed. In contrast to murine collagen XXVIII, the zebrafish orthologs are widely expressed and not only present in the nervous system. They are differentially expressed in the liver, thymus, muscle, intestine and skin. Altogether our results point to a unique nature of collagen XXVIII within the collagen family.


Asunto(s)
Colágeno/química , Colágeno/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Colágeno/genética , Evolución Molecular , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Filogenia , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Distribución Tisular , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
J Invest Dermatol ; 134(5): 1313-1322, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24232570

RESUMEN

Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex.


Asunto(s)
Membrana Basal/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Síndrome de Fraser/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Matriz Extracelular/metabolismo , Femenino , Síndrome de Fraser/genética , Técnicas de Silenciamiento del Gen , Genes Recesivos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Pez Cebra
17.
Gene Expr Patterns ; 10(1): 53-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19861176

RESUMEN

AMACO is a basement membrane associated protein that belongs to the VWA domain-containing protein superfamily. In addition to three VWA domains it contains two EGF-like domains, a cysteine-rich domain and a unique domain. Mouse AMACO has been partially characterized, but its function remains unknown. The zebrafish genome contains a single AMACO ortholog gene on chromosome 12. The domain structure is completely conserved between zebrafish and mouse and the first EGF-like domain, carrying a rare O-glucosylation and O-fucosylation consensus sequence, has the highest identity at the protein level. RT-PCR shows strongest AMACO expression during development, starting at the 5 somite stage. An antibody specific for zebrafish AMACO detected expression mainly in myosepta but also in skin, pronephros, pituitary gland, otic capsule and gills. In situ hybridization revealed that the muscle precursor cells of the somites express the protein that is laid down in the myosepta.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Expresión Génica , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Biología Computacional , Secuencia Conservada/genética , Cartilla de ADN/genética , Proteínas de la Matriz Extracelular/genética , Branquias/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Piel/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Matrix Biol ; 28(8): 456-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651211

RESUMEN

The VWA domain-containing extracellular matrix protein AMACO has not been extensively characterized and its function remains unknown. It has been proposed as a potential cancer marker and carries a rare O-glucosylation and O-fucosylation on its first EGF-like domain. AMACO is a basement membrane associated protein, however its exact localization has not been determined. Here we show by immunogold electron microscopy of mouse kidney and skin that AMACO does not occur within the basement membrane but rather subjacent to the basement membrane at its stromal surface. In skin, AMACO often colocalizes with triple-helical domains of collagen VII containing anchoring fibrils as they emerge from the basal lamina. However, the immunogold patterns for AMACO and the C-terminal end of collagen VII show discrete differences, indicating that AMACO and collagen VII do not colocalize at anchoring plaques. In contrast, the localization pattern of AMACO partially overlaps with that for collagen XVIII. In addition, mouse AMACO was shown to support beta1 integrin-mediated adhesion of a keratinocyte-like cell line, HaCaT, and a fibroblast cell line, Wi26, in an RGD-dependent manner, most likely using an RGD-motif near the C-terminus of AMACO. However, the loss of cell adhesion to the C-terminal part of the human AMACO, due to the unique absence of an RGD sequence in the human protein, suggests that cell adhesion is not AMACO's major function.


Asunto(s)
Membrana Basal/metabolismo , Adhesión Celular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Riñón/metabolismo , Oligopéptidos/metabolismo , Piel/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Membrana Basal/ultraestructura , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Cationes Bivalentes/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Colágeno Tipo VII/metabolismo , Colágeno Tipo VIII/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibronectinas/metabolismo , Humanos , Integrina beta1/inmunología , Integrina beta1/metabolismo , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Riñón/crecimiento & desarrollo , Riñón/ultraestructura , Corteza Renal/metabolismo , Médula Renal/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/ultraestructura , Ratones , Ratones Endogámicos , Oligopéptidos/antagonistas & inhibidores , Oligopéptidos/genética , Oligopéptidos/farmacología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Piel/embriología , Piel/crecimiento & desarrollo , Piel/ultraestructura
19.
J Biol Chem ; 283(26): 17846-54, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18434322

RESUMEN

AMACO (VWA2 protein) is an extracellular matrix protein of unknown function associated with certain basement membranes in skin, lung, and kidney. AMACO is a member of the von Willebrand factor A-like (VWA) domain containing protein superfamily and in addition to three VWA domains it also contains two epidermal growth factor-like domains. One of these contains the rare, overlapping consensus sequences for both O-glucosylation and O-fucosylation. In earlier studies of other proteins the attachment of either core glucose and fucose moieties or of the respective elongated glycans starting with these monosaccharides has been described. By a detailed mass spectrometric analysis we show that both elongated O-glucosylated (Xyl1-3Xyl1-3Glc) and elongated O-fucosylated glycan chains (NeuAc2-3Gal1-4GlcNAc1-3Fuc) can be attached to AMACO in close proximity on the same epidermal growth factor-like domain. It has been reported that the lack of O-fucosylation can markedly decrease secretion of proteins. However, the secretion of AMACO is not significantly affected when the glycosylation sites are mutated. The number of extracellular matrix proteins carrying the overlapping consensus sequence is very limited and it could be that these modifications have a new, yet unknown function.


Asunto(s)
Factor de Crecimiento Epidérmico/química , Proteínas de la Matriz Extracelular/química , Fucosa/química , Glucosa/química , Secuencia de Aminoácidos , Biomarcadores de Tumor , Proteínas de Unión al Calcio , Cromatografía Liquida/métodos , Matriz Extracelular/metabolismo , Humanos , Espectrometría de Masas/métodos , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Polisacáridos/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA