Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579172

RESUMEN

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Asunto(s)
COVID-19 , Humanos , Ligandos , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Portadoras/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
2.
Mol Psychiatry ; 27(3): 1683-1693, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027678

RESUMEN

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.


Asunto(s)
Conmoción Encefálica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anilidas , Animales , Epigénesis Genética , Fluoroacetatos , Histona Desacetilasas/metabolismo , Ratas
3.
J Phys Chem A ; 127(23): 5018-5029, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37278605

RESUMEN

Efficient 15N-hyperpolarization of [15N3]metronidazole was reported previously using the Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) technique. This hyperpolarized FDA-approved antibiotic is a potential contrast agent because it can be administered in a large dose and because previous studies revealed long-lasting HP states with exponential decay constant T1 values of up to 10 min. Possible hypoxia-sensing applications have been proposed using hyperpolarized [15N3]metronidazole. In this work, we report on the functionalization of [15N3]metronidazole with a fluorine-19 moiety via a one-step reaction to substitute the -OH group. SABRE-SHEATH hyperpolarization studies of fluoro-[15N3]metronidazole revealed efficient hyperpolarization of all three 15N sites with maximum %P15N values ranging from 4.2 to 6.2%, indicating efficient spin-relayed polarization transfer in microtesla fields via the network formed by 2J15N-15N. The corresponding 15N to 19F spin-relayed polarization transfer was found to be far less efficient with %P19F of 0.16%, i.e., more than an order of magnitude lower than that of 15N. Relaxation dynamics studies in microtesla fields support a spin-relayed polarization transfer mechanism because all 15N and 19F spins share the same T1 value of ca. 16-20 s and the same magnetic field profile for the SABRE-SHEATH polarization process. We envision the use of fluoro-[15N3]metronidazole as a potential hypoxia sensor. It is anticipated that under hypoxic conditions, the nitro group of fluoro-[15N3]metronidazole undergoes electronic stepwise reduction to an amino derivative. Ab initio calculations of 15N and 19F chemical shifts of fluoro-[15N3]metronidazole and its putative hypoxia-induced metabolites clearly indicate that the chemical shift dispersions of all three 15N sites and the 19F site are large enough to enable the envisioned hypoxia-sensing approaches.


Asunto(s)
Flúor , Metronidazol , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Nitrógeno
4.
Proc Natl Acad Sci U S A ; 116(37): 18571-18577, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375630

RESUMEN

Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage's minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.


Asunto(s)
Bacteriófago M13/genética , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Neoplasias/terapia , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bacteriófago M13/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Línea Celular Tumoral , Dependovirus/inmunología , Endosomas/inmunología , Endosomas/virología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Humanos , Lisosomas/inmunología , Lisosomas/virología , Ratones , Neoplasias/genética , Oligopéptidos/genética , Oligopéptidos/inmunología , Prueba de Estudio Conceptual , Ratas , Transducción Genética/métodos , Internalización del Virus , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Mol Imaging ; 2021: 6660358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867871

RESUMEN

Combining standard drugs with low doses of histone deacetylase inhibitors (HDACIs) is a promising strategy to increase the efficacy of chemotherapy. The ability of well-tolerated doses of HDACIs that act as chemosensitizers for platinum-based chemotherapeutics has recently been proven in many types and stages of cancer in vitro and in vivo. Detection of changes in HDAC activity/expression may provide important prognostic and predictive information and influence treatment decision-making. Use of [18F] FAHA, a HDAC IIa-specific radionuclide, for molecular imaging may enable longitudinal, noninvasive assessment of HDAC activity/expression in metastatic cancer. We evaluated the synergistic anticancer effects of cisplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in xenograft models of nonsmall cell lung cancer (NSCLC) using [18F] FAHA and [18F] FDG PET/CT imaging. Cisplatin alone significantly increased [18F] FAHA accumulation and reduced [18F] FDG accumulation in H441 and PC14 xenografts; coadministration of cisplatin and SAHA resulted in the opposite effects. Immunochemical staining for acetyl-histone H3 confirmed the PET/CT imaging findings. Moreover, SAHA had a more significant effect on the acetylome in PC14 (EGFR exon 19 deletion mutation) xenografts than H441 (wild-type EGFR and KRAS codon 12 mutant) xenografts. In conclusion, [18F] FAHA enables quantitative visualization of HDAC activity/expression in vivo, thus, may represent a clinically useful, noninvasive tool for the management of patients who may benefit from synergistic anticancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/farmacología , Fluorodesoxiglucosa F18 , Humanos , Ácidos Hidroxámicos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Vorinostat/farmacología
6.
Br J Cancer ; 125(2): 176-189, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33795809

RESUMEN

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Asunto(s)
Neoplasias de la Mama/inmunología , Antígenos CD4/genética , Antígenos CD8/genética , Linfocitos T CD8-positivos/trasplante , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Factor Plaquetario 4/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Femenino , Técnicas de Inactivación de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Células Supresoras de Origen Mieloide/inmunología , Células Neoplásicas Circulantes/inmunología , Factor Plaquetario 4/administración & dosificación , Factor Plaquetario 4/farmacología , Análisis de Supervivencia , Trasplante Isogénico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Chemistry ; 27(38): 9727-9736, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856077

RESUMEN

NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the 13 C and 15 N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T1 allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of 15 N nuclei. Although large sensitivity gains are enabled by hyperpolarization, 15 N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of 15 N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Imagen Molecular
8.
Chemistry ; 27(8): 2774-2781, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112442

RESUMEN

Many MRI contrast agents formed with the parahydrogen-induced polarization (PHIP) technique exhibit biocompatible profiles. In the context of respiratory imaging with inhalable molecular contrast agents, the development of nonflammable contrast agents would nonetheless be highly beneficial for the biomedical translation of this sensitive, high-throughput and affordable hyperpolarization technique. To this end, we assess the hydrogenation kinetics, the polarization levels and the lifetimes of PHIP hyperpolarized products (acids, ethers and esters) at various degrees of fluorine substitution. The results highlight important trends as a function of molecular structure that are instrumental for the design of new, safe contrast agents for in vivo imaging applications of the PHIP technique, with an emphasis on the highly volatile group of ethers used as inhalable anesthetics.


Asunto(s)
Medios de Contraste/química , Incendios/prevención & control , Hidrógeno/química , Imagen por Resonancia Magnética , Hidrogenación , Estructura Molecular
9.
Proc Natl Acad Sci U S A ; 115(11): 2806-2811, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29490919

RESUMEN

Over the past two decades, 33 cases of colonic adenocarcinomas have been diagnosed in rhesus macaques (Macaca mulatta) at the nonhuman primate colony of the Keeling Center for Comparative Medicine and Research at The University of Texas MD Anderson Cancer Center. The distinctive feature in these cases, based on PET/computed tomography (CT) imaging, was the presence of two or three tumor lesions in different locations, including proximal to the ileocecal juncture, proximal to the hepatic flexure, and/or in the sigmoid colon. These colon carcinoma lesions selectively accumulated [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoroacetate ([18F]FACE) at high levels, reflecting elevated carbohydrate and fatty acid metabolism in these tumors. In contrast, the accumulation of [18F]fluorothymidine ([18F]FLT) was less significant, reflecting slow proliferative activity in these tumors. The diagnoses of colon carcinomas were confirmed by endoscopy. The expression of MLH1, MSH2, and MSH6 proteins and the degree of microsatellite instability (MSI) was assessed in colon carcinomas. The loss of MLH1 protein expression was observed in all tumors and was associated with a deletion mutation in the MLH1 promoter region and/or multiple single-nucleotide polymorphism (SNP) mutations in the MLH1 gene. All tumors exhibited various degrees of MSI. The pedigree analysis of this rhesus macaque population revealed several clusters of affected animals related to each other over several generations, suggesting an autosomal dominant transmission of susceptibility for colon cancer. The newly discovered hereditary nonpolyposis colorectal cancer syndrome in rhesus macaques, termed MLH1-rheMac, may serve as a model for development of novel approaches to diagnosis and therapy of Lynch syndrome in humans.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/veterinaria , Macaca mulatta , Homólogo 1 de la Proteína MutL/metabolismo , Enfermedades de los Primates/metabolismo , Animales , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico por imagen , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/metabolismo , Femenino , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/genética , Polimorfismo de Nucleótido Simple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Enfermedades de los Primates/diagnóstico por imagen , Enfermedades de los Primates/genética , Enfermedades de los Primates/patología
10.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445342

RESUMEN

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-ß (Aß) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aßs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Inhibidores de Histona Desacetilasas/farmacocinética , Histona Desacetilasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Anilidas/química , Anilidas/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Fluoroacetatos/química , Fluoroacetatos/farmacocinética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Células Tumorales Cultivadas
11.
Angew Chem Int Ed Engl ; 60(5): 2406-2413, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33063407

RESUMEN

Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.


Asunto(s)
Antibacterianos/uso terapéutico , Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Nimorazol/uso terapéutico , Antibacterianos/farmacología , Humanos , Campos Magnéticos , Nimorazol/farmacología
12.
Chemistry ; 26(60): 13621-13626, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32667687

RESUMEN

The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas-phase lifetimes of hyperpolarized 129 Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of 129 Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low-cost and high-throughput preparation of proton-hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by 1 H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas-phase T1 relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, with T1 of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long-lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond.

13.
Chemistry ; 25(37): 8829-8836, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-30964568

RESUMEN

The NMR hyperpolarization of uniformly 15 N-labeled [15 N3 ]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15 NO2 group is hyperpolarized through spin relays created by 15 N spins in [15 N3 ]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 µT, a high level of nuclear spin polarization (P15N ) of around 16 % is achieved on all three 15 N sites. This product of 15 N polarization and concentration of 15 N spins is around six-fold better than any previous value determined for 15 N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1 ≈10 min). A novel synthesis of uniformly 15 N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.

14.
Proc Natl Acad Sci U S A ; 113(9): 2466-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884209

RESUMEN

Patients with inoperable or unresectable pancreatic neuroendocrine tumors (NETs) have limited treatment options. These rare human tumors often express somatostatin receptors (SSTRs) and thus are clinically responsive to certain relatively stable somatostatin analogs, such as octreotide. Unfortunately, however, this tumor response is generally short-lived. Here we designed a hybrid adeno-associated virus and phage (AAVP) vector displaying biologically active octreotide on the viral surface for ligand-directed delivery, cell internalization, and transduction of an apoptosis-promoting tumor necrosis factor (TNF) transgene specifically to NETs. These functional attributes of AAVP-TNF particles displaying the octreotide peptide motif (termed Oct-AAVP-TNF) were confirmed in vitro, in SSTR type 2-expressing NET cells, and in vivo using cohorts of pancreatic NET-bearing Men1 tumor-suppressor gene KO mice, a transgenic model of functioning (i.e., insulin-secreting) tumors that genetically and clinically recapitulates the human disease. Finally, preclinical imaging and therapeutic experiments with pancreatic NET-bearing mice demonstrated that Oct-AAVP-TNF lowered tumor metabolism and insulin secretion, reduced tumor size, and improved mouse survival. Taken together, these proof-of-concept results establish Oct-AAVP-TNF as a strong therapeutic candidate for patients with NETs of the pancreas. More broadly, the demonstration that a known, short, biologically active motif can direct tumor targeting and receptor-mediated internalization of AAVP particles may streamline the potential utility of myriad other short peptide motifs and provide a blueprint for therapeutic applications in a variety of cancers and perhaps many nonmalignant diseases as well.


Asunto(s)
Bacteriófagos/genética , Dependovirus/genética , Dependovirus/metabolismo , Vectores Genéticos , Tumores Neuroendocrinos/terapia , Octreótido/administración & dosificación , Neoplasias Pancreáticas/terapia , Virus Satélites/metabolismo , Animales , Femenino , Ligandos , Masculino , Ratones , Ratones Transgénicos
15.
Proc Natl Acad Sci U S A ; 113(7): 1877-82, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26839407

RESUMEN

A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Modelos Animales de Enfermedad , Imagen Multimodal , Nanotecnología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Femenino , Rayos Infrarrojos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resonancia por Plasmón de Superficie
16.
Proc Natl Acad Sci U S A ; 113(45): 12780-12785, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791177

RESUMEN

Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.

17.
Proc Natl Acad Sci U S A ; 113(45): 12786-12791, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791181

RESUMEN

Aggressive variant prostate cancers (AVPC) are a clinically defined group of tumors of heterogeneous morphologies, characterized by poor patient survival and for which limited diagnostic and treatment options are currently available. We show that the cell surface 78-kDa glucose-regulated protein (GRP78), a receptor that binds to phage-display-selected ligands, such as the SNTRVAP motif, is a candidate target in AVPC. We report the presence and accessibility of this receptor in clinical specimens from index patients. We also demonstrate that human AVPC cells displaying GRP78 on their surface could be effectively targeted both in vitro and in vivo by SNTRVAP, which also enabled specific delivery of siRNA species to tumor xenografts in mice. Finally, we evaluated ligand-directed strategies based on SNTRVAP-displaying adeno-associated virus/phage (AAVP) particles in mice bearing MDA-PCa-118b, a patient-derived xenograft (PDX) of castration-resistant prostate cancer bone metastasis that we exploited as a model of AVPC. For theranostic (a merging of the terms therapeutic and diagnostic) studies, GRP78-targeting AAVP particles served to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which has a dual function as a molecular-genetic sensor/reporter and a cell suicide-inducing transgene. We observed specific and simultaneous PET imaging and treatment of tumors in this preclinical model of AVPC. Our findings demonstrate the feasibility of GPR78-targeting, ligand-directed theranostics for translational applications in AVPC.

18.
Anal Chem ; 87(2): 892-9, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25506787

RESUMEN

Post-translational addition of methyl groups to the amino terminal tails of histone proteins regulates cellular gene expression at various stages of development and the pathogenesis of cellular diseases, including cancer. Several enzymes that modulate these post-translational modifications of histones are promising targets for development of small molecule drugs. However, there is no promising real-time histone methylation detection tool currently available to screen and validate potential small molecule histone methylation modulators in small animal models. With this in mind, we developed genetically encoded molecular biosensors based on the split-enzyme complementation approach for in vitro and in vivo imaging of lysine 9 (H3-K9 sensor) and lysine 27 (H3-K27 sensor) methylation marks of histone 3. These methylation sensors were validated in vitro in HEK293T, HepG2, and HeLa cells. The efficiency of the histone methylation sensor was assessed by employing methyltransferase inhibitors (Bix01294 and UNC0638), demethylase inhibitor (JIB-04), and siRNA silencing at the endogenous histone K9-methyltransferase enzyme level. Furthermore, noninvasive bioluminescence imaging of histone methylation sensors confirmed the potential of these sensors in monitoring histone methylation status in response to histone methyltransferase inhibitors in living animals. Experimental results confirmed that the developed H3-K9 and H3-K27 sensors are specific and sensitive to image the drug-induced histone methylation changes in living animals. These novel histone methylation sensors can facilitate the in vitro screening and in vivo characterization of new histone methyltransferase inhibitors and accelerate the pace of introduction of epigenetic therapies into the clinic.


Asunto(s)
Técnicas Biosensibles/métodos , Histonas/química , Procesamiento de Imagen Asistido por Computador , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Células Hep G2 , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Lisina/química , Metilación
19.
Bioorg Med Chem ; 22(1): 623-32, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24280068

RESUMEN

We synthesized two series of imatinib mesylate (STI-571) analogs to develop a Bcr-Abl and c-KIT receptor-specific labeling agent for positron emission tomography (PET) imaging to measure Bcr-Abl and c-KIT expression levels in a mouse model. The methods of molecular modeling, synthesis of STI-571 and its analogs, in vitro kinase assays, and radiolabeling are described. Molecular modeling revealed that these analogs bind the same Bcr-Abl and c-KIT binding sites as those bound by STI-571. The analogs potently inhibit the tyrosine kinase activity of Bcr-Abl and c-KIT, similarly to STI-571. [(18)F]-labeled STI-571 was prepared with high specific activity (75 GBq/µmol) by nucleophilic displacement and an average radiochemical yield of 12%. [(131)I]-labeled STI-571 was prepared with high purity (>95%) and an average radiochemical yield of 23%. The uptake rates of [(18)F]-STI-571 in K562 cells expressing Abl and in U87WT cells overexpressing c-KIT were significantly higher than those in the U87 cell and could be inhibited by STI-71 (confirming the specificity of uptake). PET scans of K562 and U87WT tumor-bearing mice with [(18)F]-STI-571 as a contrast agent showed visible tumor uptake and tumor-to-non-target contrast.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Proteínas de Fusión bcr-abl/metabolismo , Piperazinas/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/química , Benzamidas/química , Modelos Animales de Enfermedad , Humanos , Mesilato de Imatinib , Ratones , Modelos Moleculares , Piperazinas/química , Pirimidinas/química
20.
Tetrahedron ; 70(4): 984-990, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25110363

RESUMEN

A virtual library of 54 inositol analog mimics of In(1,4,5)P3 has been docked, scored, and ranked within the binding site of human inositol 1,4,5-trisphosphate 3-kinase A (IP3-3KA). Chemical synthesis of the best scoring structure that also met distance criteria for 3'-OH to -P in Phosphate has been attempted along with the synthesis of (1S,2R,3S,4S)-3-fluoro-2,4-dihydroxycyclohexanecarboxylic acid as an inositol analog, useful for non-invasive visualization and quantitation of IP3-3KA enzymatic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA