Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Bioanal Chem ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850318

RESUMEN

The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.

2.
J Biol Chem ; 298(12): 102597, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244454

RESUMEN

Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.


Asunto(s)
Proteínas de Choque Térmico , Proteostasis , Humanos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Prealbúmina/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Canales de Translocación SEC/metabolismo
3.
Chem Biodivers ; 19(3): e202100963, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35061334

RESUMEN

The essential oils from leaves of 20 commercial citrus accessions maintained by the University of California, Riverside Givaudan Citrus Variety Collection and selected on the basis of their odor profile were analyzed by GCMS/FID. The main components were quantified while the semi-quantitative percentage composition data was compiled with data from other publications for sample visualization, classification and comparison with leaf oils from other citrus accessions. Some compositional clusters aligned closely with the taxonomic clades of sweet orange, bitter orange, and C. hystrix while other clades like the mandarins and lemons showed distinct chemical sub-groups. Characteristic compounds for the clusters included linalyl acetate and linalool (bitter orange leaf), sabinene (sweet orange leaf), methyl N-methyl anthranilate (mandarin leaf), γ-terpinene (yuzu leaf), citronellal (C. hystrix), limonene, citronellal and citral (lemons and citrons). A chemometric approach combined with t-SNE cluster plots can be more informative than taxonomic assignments when considering flavor and fragrance characteristics.


Asunto(s)
Citrus , Aceites Volátiles , Citrus/química , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química
4.
Anal Chem ; 93(50): 16940-16946, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874156

RESUMEN

Environmental toxins and toxicants can damage proteins and threaten cellular proteostasis. Most current methodologies to identify misfolded proteins in cells survey the entire proteome for sites of changed reactivity. We describe and apply a quantitative proteomics methodology to identify destabilized proteins based on their binding to the human Hsp40 chaperone DNAJB8. These protein targets are validated by an orthogonal limited proteolysis assay using parallel reaction monitoring. We find that a brief exposure of HEK293T cells to meta-arsenite increases the affinity of two dozen proteins to DNAJB8, including known arsenite-sensitive proteins. In particular, arsenite treatment destabilizes both the pyruvate dehydrogenase complex E1 subunit and several RNA-binding proteins. This platform can be used to explore how environmental toxins impact cellular proteostasis and to identify the susceptible proteome.


Asunto(s)
Sustancias Peligrosas , Proteoma , Células HEK293 , Proteínas del Choque Térmico HSP40 , Humanos , Chaperonas Moleculares , Proteínas del Tejido Nervioso , Proteolisis , Proteómica
5.
Proc Natl Acad Sci U S A ; 115(43): E10089-E10098, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30305426

RESUMEN

Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.


Asunto(s)
Polisacáridos/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Manosa/metabolismo , Proteoma/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Respuesta de Proteína Desplegada/fisiología
6.
J Proteome Res ; 19(4): 1565-1573, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138514

RESUMEN

The quantitative multiplexing capacity of isobaric tandem mass tags (TMT) has increased the throughput of affinity purification mass spectrometry (AP-MS) to characterize protein interaction networks of immunoprecipitated bait proteins. However, variable bait levels between replicates can convolute interactor identification. We compared the Student's t-test and Pearson's R correlation as methods to generate t-statistics and assessed the significance of interactors following TMT-AP-MS. Using a simple linear model of protein recovery in immunoprecipitates to simulate reporter ion ratio distributions, we found that correlation-derived t-statistics protect against bait variance while robustly controlling type I errors (false positives). We experimentally determined the performance of these two approaches for determining t-statistics under two experimental conditions: irreversible prey association to the Hsp40 mutant DNAJB8H31Q followed by stringent washing, and reversible association to 14-3-3ζ with gentle washing. Correlation-derived t-statistics performed at least as well as Student's t-statistics for each sample and with substantial improvement in performance for experiments with high bait-level variance. Deliberately varying bait levels over a large range fails to improve selectivity but does increase the robustness between runs. The use of correlation-derived t-statistics should improve identification of interactors using TMT-AP-MS. Data are available via ProteomeXchange with identifier PXD016613.


Asunto(s)
Proteínas 14-3-3 , Espectrometría de Masas en Tándem , Cromatografía de Afinidad , Proteínas del Choque Térmico HSP40 , Humanos , Chaperonas Moleculares , Proteínas del Tejido Nervioso , Mapas de Interacción de Proteínas , Análisis Espectral
7.
EMBO J ; 34(1): 4-19, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25361606

RESUMEN

The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40/metabolismo , Priones/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Respuesta de Proteína Desplegada , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Células Hep G2 , Humanos , Priones/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología
8.
Anal Bioanal Chem ; 411(19): 4987-4998, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31254054

RESUMEN

Influenza infection requires viral escape from early endosomes into the cytosol, which is enabled by an acid-induced irreversible conformational transformation in the viral protein hemagglutinin. Despite the direct relationship between this conformational change and infectivity, label-free methods for characterizing this and other protein conformational changes in biological mixtures are limited. While the chemical reactivity of the protein backbone and side-chain residues is a proxy for protein conformation, coupling this reactivity to quantitative mass spectrometry is a challenge in complex environments. Herein, we evaluate whether electrophilic amidination coupled with pseudo-parallel reaction monitoring is an effective label-free approach to detect the fusion-associated conformational transformation in recombinant hemagglutinin (rHA). We identified rHA peptides that are differentially amidinated between the pre- and post-fusion states, and validated that this difference relies upon the fusion-associated conformational switch. We further demonstrate that we can distinguish the fusion profile in a matrix of digested cellular lysate. This fusion assay can be used to evaluate fusion competence for modified HA. Graphical abstract.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Orthomyxoviridae/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Virales/metabolismo , Amidas/metabolismo , Células HEK293 , Humanos , Límite de Detección , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Proteínas Virales/química , Proteínas Virales/clasificación
9.
Proc Natl Acad Sci U S A ; 111(12): 4449-54, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24591605

RESUMEN

Although much is known about protein folding in buffers, it remains unclear how the cellular protein homeostasis network functions as a system to partition client proteins between folded and functional, soluble and misfolded, and aggregated conformations. Herein, we develop small molecule folding probes that specifically react with the folded and functional fraction of the protein of interest, enabling fluorescence-based quantification of this fraction in cell lysate at a time point of interest. Importantly, these probes minimally perturb a protein's folding equilibria within cells during and after cell lysis, because sufficient cellular chaperone/chaperonin holdase activity is created by rapid ATP depletion during cell lysis. The folding probe strategy and the faithful quantification of a particular protein's functional fraction are exemplified with retroaldolase, a de novo designed enzyme, and transthyretin, a nonenzyme protein. Our findings challenge the often invoked assumption that the soluble fraction of a client protein is fully folded in the cell. Moreover, our results reveal that the partitioning of destabilized retroaldolase and transthyretin mutants between the aforementioned conformational states is strongly influenced by cytosolic proteostasis network perturbations. Overall, our results suggest that applying a chemical folding probe strategy to other client proteins offers opportunities to reveal how the proteostasis network functions as a system to regulate the folding and function of individual client proteins in vivo.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes , Pliegue de Proteína , Adenosina Trifosfato/metabolismo , Escherichia coli/metabolismo
10.
Exp Eye Res ; 153: 165-169, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27777122

RESUMEN

Fibulin-3 (F3) is an important, disulfide-rich, extracellular matrix glycoprotein that has been associated with a number of diseases ranging from cancer to retinal degeneration. An Arg345Trp (R345W) mutation in F3 causes the rare, autosomal dominant macular dystrophy, Malattia Leventinese. The purpose of this study was to identify and validate novel intracellular interacting partners of wild-type (WT) and R345W F3 in retinal pigment epithelium cells. We used stable isotope labeling by amino acids in cell culture (SILAC) to generate 'heavy' and 'light' isotopically labeled ARPE-19 cell populations which were subsequently infected with adenovirus encoding for FLAG-tagged WT or R345W F3. After immunoprecipitation, interacting proteins were identified by multidimensional protein identification technology (MudPIT). We identified sixteen new intracellular F3 interacting partners, the vast majority of which are involved in protein folding and/or degradation in the endoplasmic reticulum (ER). Eight of these interactions (ANXA5, ERdj5, PDIA4, P4HB, PDIA6, RCN1, SDF2L1, and TXNDC5) were verified at the western blotting level. These F3 interactome results can serve as the basis for pursuing targeted genetic or pharmacologic approaches in an effort to alter the fate of either WT or mutant F3.


Asunto(s)
ADN/genética , Proteínas de la Matriz Extracelular/genética , Mutación , Degeneración Retiniana/metabolismo , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Genotipo , Humanos , Pliegue de Proteína , Retina/metabolismo , Degeneración Retiniana/genética
11.
J Am Chem Soc ; 137(23): 7404-14, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26051248

RESUMEN

Fluorogenic probes, due to their often greater spatial and temporal sensitivity in comparison to permanently fluorescent small molecules, represent powerful tools to study protein localization and function in the context of living systems. Herein, we report fluorogenic probe 4, a 1,3,4-oxadiazole designed to bind selectively to transthyretin (TTR). Probe 4 comprises a fluorosulfate group not previously used in an environment-sensitive fluorophore. The fluorosulfate functional group does not react covalently with TTR on the time scale required for cellular imaging, but does red shift the emission maximum of probe 4 in comparison to its nonfluorosulfated analogue. We demonstrate that probe 4 is dark in aqueous buffers, whereas the TTR·4 complex exhibits a fluorescence emission maximum at 481 nm. The addition of probe 4 to living HEK293T cells allows efficient binding to and imaging of exogenous TTR within intracellular organelles, including the mitochondria and the endoplasmic reticulum. Furthermore, live Caenorhabditis elegans expressing human TTR transgenically and treated with probe 4 display TTR·4 fluorescence in macrophage-like coelomocytes. An analogue of fluorosulfate probe 4 does react selectively with TTR without labeling the remainder of the cellular proteome. Studies on this analogue suggest that certain aryl fluorosulfates, due to their cell and organelle permeability and activatable reactivity, could be considered for the development of protein-selective covalent probes.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/química , Fluoruros/química , Orgánulos/metabolismo , Prealbúmina/análisis , Ácidos Sulfúricos/química , Animales , Supervivencia Celular , Células Cultivadas , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Prealbúmina/biosíntesis , Prealbúmina/química
12.
IUBMB Life ; 67(6): 404-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26018985

RESUMEN

The endoplasmic reticulum (ER) is responsible for regulating proteome integrity throughout the secretory pathway. The ER protects downstream secretory environments such as the extracellular space by partitioning proteins between ER protein folding, trafficking, and degradation pathways in a process called ER quality control. In this process, ER quality control factors identify misfolded, aggregation-prone protein conformations and direct them toward ER protein folding or degradation, reducing their secretion to the extracellular space where they could further misfold or aggregate into proteotoxic conformations. Despite the general efficiency of ER quality control, many human diseases, such as the systemic amyloidoses, involve aggregation of destabilized, aggregation-prone proteins in the extracellular space. A common feature for all systemic amyloid diseases is the ability for amyloidogenic proteins to evade ER quality control and be efficiently secreted. The efficient secretion of these amyloidogenic proteins increases their serum concentrations available for the distal proteotoxic aggregation characteristic of these diseases. This indicates that ER quality control, and the regulation thereof, is a critical determinant in defining the onset and pathology of systemic amyloid diseases. Here, we discuss the pathologic and potential therapeutic relationship between ER quality control, protein secretion, and distal deposition of amyloidogenic proteins involved in systemic amyloid diseases. Furthermore, we present evidence that the unfolded protein response, the stress-responsive signaling pathway that regulates ER quality control, is involved in the pathogenesis of systemic amyloid diseases and represents a promising emerging therapeutic target to intervene in this class of human disease.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Retículo Endoplásmico/metabolismo , Estabilidad Proteica , Respuesta de Proteína Desplegada , Amiloidosis/patología , Retículo Endoplásmico/patología , Humanos , Pliegue de Proteína , Transporte de Proteínas , Transducción de Señal
13.
J Am Chem Soc ; 135(47): 17869-80, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24180271

RESUMEN

Small molecules that react selectively with a specific non-enzyme drug-target protein in a complex biological environment without displacement of a leaving group (tracelessly) are rare and highly desirable. Herein we describe the development of a family of fluorogenic stilbene-based vinyl amides and vinyl sulfonamides that covalently modify transthyretin (TTR) tracelessly. These small molecules bind selectively to TTR in complex biological environments and then undergo a rapid and chemoselective 1,4-Michael addition with the pKa-perturbed Lys-15 ε-amino group of TTR. Replacing the vinyl amide in 2 with the more reactive vinyl sulfonamide in 4 hastens the conjugation kinetics. X-ray cocrystallography verified the formation of the secondary amine bond mediating the conjugation in the case of 2 and 4 and confirmed the expected orientation of the stilbene within the TTR binding sites. Vinyl amide 2 and vinyl sulfonamide 4 potently inhibit TTR dissociation and amyloid fibril formation in vitro. The TTR binding selectivity, modification yield, and reaction chemoselectivity of vinyl sulfonamide 4 are good enough in human plasma to serve as a starting point for medicinal chemistry efforts. Moreover, vinyl sulfonamide 4 is fluorogenic: it exhibits minimal background fluorescence in complex biological environments, remains dark upon binding to TTR, and becomes fluorescent only upon reaction with TTR. The fluorogenicity of 4 was utilized to accurately quantify the native TTR concentration in Escherichia coli lysate using a fluorescence plate reader.


Asunto(s)
Amiloide/antagonistas & inhibidores , Colorantes Fluorescentes/farmacología , Prealbúmina/metabolismo , Estilbenos/farmacología , Sulfonamidas/farmacología , Amidas/química , Amidas/farmacología , Amiloide/metabolismo , Cristalografía por Rayos X , Colorantes Fluorescentes/química , Humanos , Cinética , Modelos Moleculares , Estilbenos/química , Sulfonamidas/química
14.
Mol Omics ; 19(3): 191-204, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36655925

RESUMEN

Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos
15.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503147

RESUMEN

Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which is only semi-quantitative and suffers from poor sensitivity. Here, we integrate parallel reaction monitoring mass spectrometry to enable a more quantitative platform for ER import. PRM as opposed to densitometry improves quantification of transthyretin mistargeting while also achieving at least a ten-fold gain in sensitivity. The multiplexing of PRM also enabled us to evaluate a series of normalization approaches, revealing that normalization to auto-labeled APEX2 peroxidase is necessary to account for drug treatment-dependent changes in labeling efficiency. We apply this approach to systematically characterize the relationship between chemical ER stressors and ER pre-QC induction in HEK293T cells. Using dual-FLAG-tagged transthyretin (FLAGTTR) as a model secretory protein, we find that Brefeldin A treatment as well as ER calcium depletion cause pre-QC, while tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38173467

RESUMEN

Proximity labeling is a powerful approach for characterizing subcellular proteomes. We recently demonstrated that proximity labeling can be used to identify mistrafficking of secretory proteins, such as occurs during pre-emptive quality control (pre-QC) following endoplasmic reticulum (ER) stress. This assay depends on protein quantification by immunoblotting and densitometry, which sometimes suffers from poor sensitivity. Here, we integrate parallel reaction monitoring (PRM) mass spectrometry to enable a more quantitative platform, and assess how chemical ER stressors impact pre-QC of the model secretory protein transthyretin in HEK293T cells. We find that some drug treatments affect labeling efficiency, which can be controlled for by normalizing to APEX2 auto-labeling. While some chemical ER stress inducers including Brefeldin A and thapsigargin induce pre-QC, tunicamycin and dithiothreitol do not, indicating ER stress alone is not sufficient. This finding contrasts with the canonical model of pre-QC induction, and establishes the utility of our platform.

17.
ACS Chem Biol ; 18(7): 1661-1676, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37427419

RESUMEN

Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.


Asunto(s)
Herbicidas , Proteoma , Humanos , Cisteína , Células HEK293 , Herbicidas/toxicidad , Herbicidas/química , Proteínas del Tejido Nervioso , Chaperonas Moleculares , Proteínas del Choque Térmico HSP40
18.
Proc Natl Acad Sci U S A ; 106(36): 15237-42, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19720997

RESUMEN

Base excision repair (BER) enzymes maintain the integrity of the genome, and in humans, BER mutations are associated with cancer. Given the remarkable sensitivity of DNA-mediated charge transport (CT) to mismatched and damaged base pairs, we have proposed that DNA repair glycosylases (EndoIII and MutY) containing a redox-active [4Fe4S] cluster could use DNA CT in signaling one another to search cooperatively for damage in the genome. Here, we examine this model, where we estimate that electron transfers over a few hundred base pairs are sufficient for rapid interrogation of the full genome. Using atomic force microscopy, we found a redistribution of repair proteins onto DNA strands containing a single base mismatch, consistent with our model for CT scanning. We also demonstrated in Escherichia coli a cooperativity between EndoIII and MutY that is predicted by the CT scanning model. This relationship does not require the enzymatic activity of the glycosylase. Y82A EndoIII, a mutation that renders the protein deficient in DNA-mediated CT, however, inhibits cooperativity between MutY and EndoIII. These results illustrate how repair proteins might efficiently locate DNA lesions and point to a biological role for DNA-mediated CT within the cell.


Asunto(s)
Daño del ADN/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Modelos Biológicos , Transducción de Señal/fisiología , Transporte de Electrón , Escherichia coli , Microscopía de Fuerza Atómica , Oxidación-Reducción
19.
Cells ; 11(10)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626697

RESUMEN

The extracellular aggregation of destabilized transthyretin (TTR) variants is implicated in the onset and pathogenesis of familial TTR-related amyloid diseases. One strategy to reduce the toxic, extracellular aggregation of TTR is to decrease the population of aggregation-prone proteins secreted from mammalian cells. The stress-independent activation of the unfolded protein response (UPR)-associated transcription factor ATF6 preferentially decreases the secretion and subsequent aggregation of destabilized, aggregation-prone TTR variants. However, the mechanism of this reduced secretion was previously undefined. Here, we implement a mass-spectrometry-based interactomics approach to identify endoplasmic reticulum (ER) proteostasis factors involved in ATF6-dependent reductions in destabilized TTR secretion. We show that ATF6 activation reduces amyloidogenic TTR secretion and subsequent aggregation through a mechanism involving ER retention that is mediated by increased interactions with ATF6-regulated ER proteostasis factors including BiP and PDIA4. Intriguingly, the PDIA4-dependent retention of TTR is independent of both the single TTR cysteine residue and the redox activity of PDIA4, indicating that PDIA4 retains destabilized TTR in the ER through a redox-independent mechanism. Our results define a mechanistic basis to explain the ATF6 activation-dependent reduction in destabilized, amyloidogenic TTR secretion that could be therapeutically accessed to improve treatments of TTR-related amyloid diseases.


Asunto(s)
Prealbúmina , Proteostasis , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mamíferos/metabolismo , Prealbúmina/metabolismo , Respuesta de Proteína Desplegada
20.
ACS Chem Biol ; 17(7): 1963-1977, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35675579

RESUMEN

The proper trafficking of eukaryotic proteins is essential to cellular function. Genetic, environmental, and other stresses can induce protein mistargeting and, in turn, threaten cellular protein homeostasis. Current methods for measuring protein mistargeting are difficult to translate to living cells, and thus the role of cellular signaling networks in stress-dependent protein mistargeting processes, such as ER pre-emptive quality control (ER pQC), is difficult to parse. Herein, we use genetically encoded peroxidases to characterize protein import into the endoplasmic reticulum (ER). We show that the ERHRP/cytAPEX pair provides good selectivity and sensitivity for both multiplexed protein labeling and for identifying protein mistargeting, using the known ER pQC substrate transthyretin (TTR). Although ERHRP labeling induces formation of detergent-resistant TTR aggregates, this is minimized by using low ERHRP expression, without loss of labeling efficiency. cytAPEX labeling recovers TTR that is mistargeted as a consequence of Sec61 inhibition or ER stress-induced ER pQC. Furthermore, we discover that stress-free activation of the ER stress-associated transcription factor ATF6 recapitulates the TTR import deficiency of ER pQC. Hence, proximity labeling is an effective strategy for characterizing factors that influence ER protein import in living cells.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico , Transporte de Proteínas , Proteostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA