Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(21): 8325-8331, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191948

RESUMEN

Probing the single-cell mechanobiology in situ is imperative for microbial processes in the medical, industrial, and agricultural realms, but it remains a challenge. Herein, we present a single-cell force microscopy method that can be used to measure microbial adhesion strength under anaerobic conditions in situ. This method integrates atomic force microscopy with an anaerobic liquid cell and inverted fluorescence microscopy. We obtained the nanomechanical measurements of the single anaerobic bacterium Ethanoligenens harbinense YUAN-3 and the methanogenic archaeon Methanosarcina acetivorans C2A and their nanoscale adhesion forces in the presence of sulfoxaflor, a successor of neonicotinoid pesticides. This study presents a new tool for in situ single-cell force measurements of various anoxic and anaerobic species and provides new perspectives for evaluating the potential environmental risk of neonicotinoid applications in ecosystems.


Asunto(s)
Ecosistema , Anaerobiosis , Composición de Base , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S , Microscopía de Fuerza Atómica/métodos
2.
J Anat ; 243(1): 78-89, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36748120

RESUMEN

Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.


Asunto(s)
Canales Semicirculares , Pez Cebra , Animales , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Epitelio/metabolismo , Morfogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica
3.
Brain Behav Immun ; 108: 98-117, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427810

RESUMEN

Growing evidence suggests the involvement of the microbiota-gut-brain axis in cognitive impairment induced by sleep deprivation (SD), however how the microbiota-gut-brain axis work remains elusive. Here, we discovered that chronic SD induced intestinal dysbiosis, activated NLRP3 inflammasome in the colon and brain, destructed intestinal/blood-brain barrier, and impaired cognitive function in mice. Transplantation of "SD microbiota" could almost mimic the pathological and behavioral changes caused by chronic SD. Furthermore, all the behavioral and pathological abnormalities were practically reversed in chronic sleep-deprived NLRP3-/- mice. Regional knockdown NLRP3 expression in the gut and hippocampus, respectively. We observed that down-regulation of NLRP3 in the hippocampus inhibited neuroinflammation, and ameliorated synaptic dysfunction and cognitive impairment induced by chronic SD. More intriguingly, the down-regulation of NLRP3 in the gut protected the intestinal barrier, attenuated the levels of peripheral inflammatory factors, down-regulated the expression of NLRP3 in the brain, and improved cognitive function in chronic SD mice. Our results identified gut microbiota as a driver in chronic SD and highlighted the NLRP3 inflammasome as a key regulator within the microbiota-gut-brain axis.


Asunto(s)
Disfunción Cognitiva , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Privación de Sueño/complicaciones , Disbiosis/inducido químicamente , Hipocampo/metabolismo , Disfunción Cognitiva/metabolismo , Intestinos
4.
Mol Psychiatry ; 26(4): 1162-1177, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31576007

RESUMEN

Compelling evidence suggests that synaptic structural plasticity, driven by remodeling of the actin cytoskeleton, underlies addictive drugs-induced long-lasting behavioral plasticity. However, the signaling mechanisms leading to actin cytoskeleton remodeling remain poorly defined. DNA methylation is a critical mechanism used to control activity-dependent gene expression essential for long-lasting synaptic plasticity. Here, we provide evidence that DNA methyltransferase DNMT3a is degraded by the E2 ubiquitin-conjugating enzyme Ube2b-mediated ubiquitination in dorsal hippocampus (DH) of rats that repeatedly self-administrated heroin. DNMT3a degradation leads to demethylation in CaMKK1 gene promotor, thereby facilitating CaMKK1 expression and consequent activation of its downstream target CaMKIα, an essential regulator of spinogenesis. CaMKK1/CaMKIα signaling regulates actin cytoskeleton remodeling in the DH and behavioral plasticity by activation of Rac1 via acting Rac guanine-nucleotide-exchange factor ßPIX. These data suggest that Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on CaMKK1 gene and thus activates CaMKK1/CaMKIα/ßPIX/Rac1 cascade, leading to drug use-induced actin polymerization and behavior plasticity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Alcaloides Opiáceos , Enzimas Ubiquitina-Conjugadoras , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , ADN Metiltransferasa 3A , Factores de Intercambio de Guanina Nucleótido , Hipocampo , Plasticidad Neuronal/genética , Ratas , Transducción de Señal
5.
Nucleic Acids Res ; 48(22): 12675-12688, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33271598

RESUMEN

In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Satélite/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas de Pez Cebra/genética , Animales , Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Heterocromatina , Histonas/genética , Mosaicismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
J Cell Mol Med ; 25(17): 8567-8572, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34288397

RESUMEN

N6-Methyladenosine (m6A) is the most prevalent internal modification in messenger RNAs (mRNAs) of eukaryotes and plays a vital role in post-transcriptional regulation. Recent studies demonstrated that m6A is essential for the normal function of the central nervous system (CNS), and the deregulation of m6A leads to a series of CNS diseases. However, the functional consequences of m6A deficiency within the dopaminergic neurons of adult brain are elusive. To evaluate the necessity of m6A in dopaminergic neuron functions, we conditionally deleted Mettl14, one of the most important part of m6A methyltransferase complexes, in the substantia nigra (SN) region enriched with dopaminergic neurons. By using rotarod test, pole test, open-field test and elevated plus maze, we found that the deletion of Mettl14 in the SN region induces impaired motor function and locomotor activity. Further molecular analysis revealed that Mettl14 deletion significantly reduced the total level of m6A in the mRNA isolated from SN region. Tyrosine hydroxylase (TH), an essential enzyme for dopamine synthesis, was also down-regulated upon Mettl14 deletion, while the activation of microglia and astrocyte was enhanced. Moreover, the expression of three essential transcription factors in the regulation of TH including Nurr1, Pitx3 and En1, with abundant m6A-binding sites on their RNA 3'-untranslated regions (UTR), was significantly decreased upon Mettl14 deletion in SN. Our finding first confirmed the significance of m6A in maintaining normal dopaminergic function in the SN of adult mouse.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Neuronas Dopaminérgicas , Metiltransferasas/fisiología , Sustancia Negra , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Ratones Endogámicos C57BL , Sustancia Negra/metabolismo , Sustancia Negra/patología
7.
RNA ; 24(12): 1856-1870, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254136

RESUMEN

Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3-/- embryos died prior to blastocyst implantation, whereas Rnpc3+/- mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.


Asunto(s)
Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Alelos , Animales , Tracto Gastrointestinal/metabolismo , Humanos , Intrones/genética , Ratones , ARN Nuclear Pequeño/síntesis química , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Empalmosomas/química , Empalmosomas/genética
8.
Microbiol Immunol ; 64(12): 825-834, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33034909

RESUMEN

It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/ß1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/ß1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/ß1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/ß1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/ß1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.


Asunto(s)
Adhesión Bacteriana/fisiología , Células Epiteliales/microbiología , Proteína HMGN2/metabolismo , Integrina alfa5beta1/metabolismo , Klebsiella pneumoniae/metabolismo , Factores de Transcripción NFI/metabolismo , Células A549 , Regulación de la Expresión Génica , Proteína HMGN2/genética , Humanos , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina alfa5beta1/genética , Integrina beta1/genética , Integrina beta1/metabolismo , Infecciones por Klebsiella/metabolismo , Klebsiella pneumoniae/genética , Pulmón , ARN Interferente Pequeño/metabolismo , Transcriptoma
9.
Addict Biol ; 22(6): 1731-1742, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27549397

RESUMEN

Addiction is characterized by drug craving, compulsive drug taking and relapse, which is attributed to aberrant neuroadaptation in brain regions implicated in drug addiction, induced by changes in gene and protein expression in these regions after chronic drug exposure. Accumulating evidence suggests that the dorsal hippocampus (DH) plays an important role in mediating drug-seeking and drug-taking behavior and relapse. However, the molecular mechanisms underlying these effects of the DH are unclear. In the present study, we employed a label-free quantitative proteomic approach to analyze the proteins altered in the DH of heroin self-administering rats. A total of 4015 proteins were quantified with high confidence, and 361 proteins showed significant differences compared with the saline control group. Among them, cyclin-dependent kinase 5 (CDK5) and ras homolog family member B (RhoB) were up-regulated in rats with a history of extended access to heroin. Functionally, inhibition of CDK5 in the DH enhanced heroin self-administration, indicating that CDK5 signaling in the DH acts as a homeostatic compensatory mechanism to limit heroin-taking behavior, whereas blockade of the Rho-Rho kinase (ROCK) pathway attenuated context-induced heroin relapse, indicating that RhoB signaling in the DH is required for the retrieval (recall) of addiction memory. Our findings suggest that manipulation of CDK5 signaling in the DH may be essential in determining vulnerability to opiate taking, whereas manipulation of RhoB signaling in the DH may be essential in determining vulnerability to relapse. Overall, the present study suggests that the DH can exert dissociative effects on heroin addiction through CDK5 and RhoB signaling.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Dependencia de Heroína/fisiopatología , Heroína/farmacología , Hipocampo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoB/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Heroína/administración & dosificación , Dependencia de Heroína/genética , Dependencia de Heroína/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Narcóticos/administración & dosificación , Narcóticos/farmacología , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Recurrencia , Autoadministración , Proteína de Unión al GTP rhoB/efectos de los fármacos , Proteína de Unión al GTP rhoB/genética
10.
Development ; 140(21): 4362-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24067352

RESUMEN

Morphogenesis of the semicircular canal ducts in the vertebrate inner ear is a dramatic example of epithelial remodelling in the embryo, and failure of normal canal development results in vestibular dysfunction. In zebrafish and Xenopus, semicircular canal ducts develop when projections of epithelium, driven by extracellular matrix production, push into the otic vesicle and fuse to form pillars. We show that in the zebrafish, extracellular matrix gene expression is high during projection outgrowth and then rapidly downregulated after fusion. Enzymatic disruption of hyaluronan in the projections leads to their collapse and a failure to form pillars: as a result, the ears swell. We have cloned a zebrafish mutant, lauscher (lau), identified by its swollen ear phenotype. The primary defect in the ear is abnormal projection outgrowth and a failure of fusion to form the semicircular canal pillars. Otic expression of extracellular matrix components is highly disrupted: several genes fail to become downregulated and remain expressed at abnormally high levels into late larval stages. The lau mutations disrupt gpr126, an adhesion class G protein-coupled receptor gene. Expression of gpr126 is similar to that of sox10, an ear and neural crest marker, and is partially dependent on sox10 activity. Fusion of canal projections and downregulation of otic versican expression in a hypomorphic lau allele can be restored by cAMP agonists. We propose that Gpr126 acts through a cAMP-mediated pathway to control the outgrowth and adhesion of canal projections in the zebrafish ear via the regulation of extracellular matrix gene expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Canales Semicirculares/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Genotipo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Repeticiones de Microsatélite/genética , Faloidina , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción SOXE/metabolismo , Canales Semicirculares/anomalías , Análisis de Secuencia de ADN , Versicanos/metabolismo
11.
Genesis ; 53(10): 640-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26271004

RESUMEN

Single Nucleotide Polymorphisms in FTO intron 1 have been associated with obesity risk, leading to the hypothesis that FTO is the obesity-related gene. However, other studies have shown that the FTO gene is part of the regulatory domain of the neighboring IRX3 gene and that enhancers in FTO intron 1 regulate IRX3. While Irx3 activity was shown to be necessary in the hypothalamus for the metabolic function of Irx3 in mouse, no enhancers with hypothalamic activity have been demonstrated in the risk-associated region within FTO. In order to identify potential enhancers at the human FTO locus in vivo, we tested regulatory activity in FTO intron 1 using BAC transgenesis in zebrafish. A minimal gata2 promoter-GFP cassette was inserted 1.3 kb upstream of the obesity associated SNP rs9939609 in a human FTO BAC plasmid. In addition to the previously identified expression domains in notochord and kidney, human FTO BAC:GFP transgenic zebrafish larvae expressed GFP in the ventral posterior tuberculum, the posterior hypothalamus and the anterior brainstem, which are also expression domains of zebrafish irx3a. In contrast, an in-frame insertion of a GFP cassette at the FTO start codon resulted in weak ubiquitous GFP expression indicating that the promoter of FTO does likely not react to enhancers located in the obesity risk-associated region.


Asunto(s)
Hipotálamo/metabolismo , Obesidad/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Animales Modificados Genéticamente , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hipotálamo/embriología , Hipotálamo/crecimiento & desarrollo , Inmunohistoquímica , Hibridación in Situ , Intrones/genética , Larva/genética , Larva/metabolismo , Microscopía Confocal , Regiones Promotoras Genéticas/genética , Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
12.
Int J Neuropsychopharmacol ; 17(9): 1501-10, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24621884

RESUMEN

Depression is a serious mental disorder in the world, but the underlying mechanisms remain unclear and the effective cures are scarce. Iptakalim (Ipt), an ATP-sensitive potassium (K-ATP) channel opener that can cross the blood-brain barrier freely, has been demonstrated to inhibit neuro-inflammation and enhance adult hippocampal neurogenesis. But it is unknown whether Ipt is beneficial to therapy of depression by modulating neurogenesis and neuro-inflammation. This study aimed to determine the potential antidepressant efficacy of Ipt in a chronic mild stress (CMS) mouse model of depression. We showed that treatment with Ipt (10 mg/kg/day, i.p) for 4 wk restored the decrease of sucrose preference and shortened the immobile time in forced swimming tests (FST) and tail suspension tests (TST) in CMS model mice. We further found that Ipt reversed the CMS-induced reduction of the adult hippocampal neurogenesis and improved cerebral insulin signalling in the CMS mice. Furthermore, Ipt negatively regulated nod-like receptor protein 3 (NLRP3) expression and, in turn, inhibited microglia-mediated neuro-inflammation by suppressing the activation of NLRP3-inflammasome/caspase-1/interleukin 1ß axis in the hippocampus of CMS mice. Taken together, our findings demonstrate that Ipt plays a potential antidepressant role in CMS model mice through regulating neuro-inflammation and neurogenesis, which will provide potential for Ipt in terms of opening up novel therapeutic avenues for depression.


Asunto(s)
Antidepresivos/uso terapéutico , Citocinas/metabolismo , Depresión/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Propilaminas/uso terapéutico , Animales , Antidepresivos/farmacología , Peso Corporal/efectos de los fármacos , Bromodesoxiuridina/metabolismo , Recuento de Células , Corticosterona/sangre , Citocinas/genética , Depresión/sangre , Depresión/etiología , Modelos Animales de Enfermedad , Preferencias Alimentarias/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Suspensión Trasera , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Propilaminas/farmacología , Estrés Psicológico/complicaciones , Edulcorantes/administración & dosificación , Natación/psicología
13.
Environ Sci Pollut Res Int ; 31(6): 8963-8973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182960

RESUMEN

Much dust is generated in underground coal mining processes, posing threats to workers' health and safety production. Dust enters the human body mainly through inhalation, primarily determined by the dust concentration around workers. In this study, the airflow field and dust distribution in the tunnel are simulated with FLUENT software. The breathing zone for a worker was defined to clarify the extent of external dust distribution influencing dust inhalation. The effects of human respiration, dust production rates, air supply velocities, and workers' positions on dust concentration in the breathing zone were investigated. The results show that there is upward airflow around the worker standing in the center of the air circulation. Human breath barely influences the airflow distribution and respirable dust concentrations in the breathing zone. Reducing the dust production rate in the tunnel can decrease the respirable dust concentration in the breathing zone by almost the same proportion. While increasing the air supply velocity by 50% would reduce only 20% of dust in the breathing zone. The dust concentrations vary along the roadway, in which the low concentration zone is located in the middle, more than 1.0 m away from the dust-producing surface and the wind surface. The research contributes to reducing workers' dust exposure with suggestions regarding ventilation optimization and working position selection.


Asunto(s)
Contaminantes Ocupacionales del Aire , Minas de Carbón , Enfermedades Pulmonares , Exposición Profesional , Humanos , Polvo/análisis , Exposición Profesional/análisis , Respiración , Contaminantes Ocupacionales del Aire/análisis , Exposición por Inhalación/análisis
14.
Yi Chuan ; 35(5): 623-7, 2013 May.
Artículo en Zh | MEDLINE | ID: mdl-23732669

RESUMEN

Arachnomelia syndrome (AS) is a recessive inherited disease in cattle. Although the arachnomelia phenotypes are virtually identical in Brown Swiss and Simmental cattle, the causative mutation are different, which are a 1 bp insertion c.363-364insG in the sulfite oxidase (SUOX) gene and a 2 bp deletion c.1224_1225delCA in the molybdenum cofactor syn-thesis step 1 (MOCS1) gene, respectively. In the current study, combining fluorescence PCR with capillary electrophoresis technology, an automatic fluorescence method was established, which could detect the two causative loci rapidly and cor-rectly with a single reaction. Samples from 51 Simmental bulls, 80 cows mated artificially using semen of Simmental bulls and their resulted 106 progeny, together with 55 Xinjiang Brown were collected and used for validation of the newly de-signed methods. Our results have laid a foundation for screening AS disease causing mutations in Chinese cattle.


Asunto(s)
Enfermedades de los Bovinos/genética , Coenzimas/genética , Deformidades Congénitas de las Extremidades/veterinaria , Metaloproteínas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Bovinos , Enfermedades de los Bovinos/congénito , Enfermedades de los Bovinos/diagnóstico , Femenino , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Cofactores de Molibdeno , Mutagénesis Insercional , Pteridinas , Eliminación de Secuencia
15.
Environ Sci Pollut Res Int ; 30(14): 41486-41504, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36633750

RESUMEN

A special conical diffuser was presented and fixed on the top of the filter cartridge to improve the flow field. The existence of the diffuser can disperse the jet flow from the nozzle, and the high-speed airflow can act on more areas of the filter cartridge, including the top area of the filter cartridge. To improve the cleaning efficiency, the present study is aimed at optimizing the structure of the filter cartridge. The DPM model was used to simulate the dust dispersion process and the falling dust sedimentation from the filter under the action of the pulsed airflow. To validate the established model, the pressure values at the monitoring points were analyzed and compared with the related experimental results. It is found that the pressure values are consistent with the experimental results. Moreover, the installation distance and the size of the diffuser were studied and their influence on the dust distribution on the surface of the filter cartridge. It is found that the dust removal effect is relatively better when the installation distance is 90 mm and the size radius is 25 mm. The maximum dust concentration can be reduced by 15 mg/m3. The present research results can provide theoretical guidance for the cleaning process of the filter cartridge and finally improve the dust-removal efficiency of the dust collector.


Asunto(s)
Polvo , Filtración , Frecuencia Cardíaca
16.
Environ Sci Pollut Res Int ; 30(46): 102244-102259, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37665436

RESUMEN

Dust exposures during mining activity can result in lung diseases such as coal workers' pneumoconiosis (CWP) and silicosis, and it is closely related to quartz dust. In the present study, coal-quartz dust mixture were investigated considering the particle size and the specific constituents. Multiple numerical techniques, including computational fluid dynamics and discrete element method (CFD-DEM), hard sphere model, and direct Monte Carlo simulation (DSMC), were presented, and the dust diffusion processes were investigated. According to the validation of the numerical method, the suspension characteristics of the polydisperse mixed dust were analyzed in detail. The results show that PM10 responds quickly, has a large diffusion range, and is easily affected by the reflux. The particle size increases gradually from top to bottom. When the air velocity is low, the percentage of coal dust in the breathing zone tends to be 50%. The results provide theoretical guidance for the comprehensive prevention of the mixed dust in underground coal mines.


Asunto(s)
Antracosis , Minas de Carbón , Exposición Profesional , Humanos , Cuarzo , Carbón Mineral/análisis , Condiciones de Trabajo , Polvo/análisis
17.
Heliyon ; 9(7): e18008, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449137

RESUMEN

Epigenetics modification is a process that does not change the sequence of deoxyribonucleic acid (DNA) in disease progression but can alter the genetic expression of the brain in Alzheimer's disease (AD). In this study, we deployed the weighted gene co-expression network analysis (WGCNA) to explore the role of Class I histone deacetylases (HDACs) in AD, which included HDAC1, HDAC2, HDAC3, and HDAC8. The aim of the study was to find how Class I HDACs affected AD pathology by analyzing the Gene Expression Omnibus (GEO) microarray datasets GSE33000. We found that HDAC1 and HDAC8 were more highly expressed in the cortex of AD patients than in Controls, while HDAC2 and HDAC3 were lower expressed. By WGCNA analysis, we found the blue module was associated with HDAC1 and HDAC8, and the turquoise module was related to HDAC2 and HDAC3. Functional enrichment analysis revealed that the Wnt signaling pathway and synaptic plasticity played an important role in the modification of HDAC1 and HDAC8 while gap junction and cell-cell junction were involved in the regulation of HDAC2 and HDAC3 in the disease progression of AD. By Receiver Operating Characteristics (ROC) analysis, we concluded that HDAC1 might be the most probable diagnostic biomarker of Class I HDACs for AD. Our study provided a comprehensive understanding of Class I HDACs and provided new insight into the function of HDAC1 in AD disease progression.

18.
Front Microbiol ; 14: 1097492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007517

RESUMEN

Lytic polysaccharide monooxygenases (LPMO) are expected to change the current status of chitin resource utilization. This study reports that targeted enrichment of the microbiota was performed with chitin by the selective gradient culture technique, and a novel LPMO (M2822) was identified from the enrichment microbiota metagenome. First, soil samples were screened based on soil bacterial species and chitinase biodiversity. Then gradient enrichment culture with different chitin concentrations was carried out. The efficiency of chitin powder degradation was increased by 10.67 times through enrichment, and chitin degradation species Chitiniphilus and Chitinolyticbacter were enriched significantly. A novel LPMO (M2822) was found in the metagenome of the enriched microbiota. Phylogenetic analysis showed that M2822 had a unique phylogenetic position in auxiliary activity (AA) 10 family. The analysis of enzymatic hydrolysate showed that M2822 had chitin activity. When M2822 synergized with commercial chitinase to degrade chitin, the yield of N-acetyl glycosamine was 83.6% higher than chitinase alone. The optimum temperature and pH for M2822 activity were 35°C and 6.0. The synergistic action of M2822 and chitin-degrading enzymes secreted by Chitiniphilus sp. LZ32 could efficiently hydrolyze shrimp shell powder. After 12 h of enzymatic hydrolysis, chitin oligosaccharides (COS) yield reached 4,724 µg/mL. To our knowledge, this work is the first study to mine chitin activity LPMO in the metagenome of enriched microbiota. The obtained M2822 showed application prospects in the efficient production of COS.

19.
Environ Sci Pollut Res Int ; 30(29): 73213-73230, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37183224

RESUMEN

The present study investigates dust generated from the unloading process in a high-rise building for the mine hoist system and analyzes dust dispersion with the moving conveyance in the building. First, the gas-solid two-phase flow in the building was investigated based on the CFD-DPM method. In particular, the moving conveyance was considered in detail and treated via the dynamic mesh technology. Then, the airflow and dust distribution were investigated in the building. The airflow and the dust concentration at selected points show good agreement with the relative results of field measurements by ourselves. It is found that the descending conveyance significantly influences the surrounding flow field and the spatial and temporal distribution of dust. Dust concentration before the dust source (2 m × 2 m) is high, which extends downward with the conveyance. Dust concentration of the lower floors increases obviously when compared with that of the condition without the movement of the conveyance. The descending velocity of the conveyance also affects the amount of PM2.5 discharged from the return air outlet. The fitting functions are provided to predict PM2.5 emissions to the surrounding atmosphere. The research results are of great significance for the improvement of the dust control system for cleaner production technology.


Asunto(s)
Minas de Carbón , Carbón Mineral , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , Polvo/análisis
20.
Water Res ; 231: 119657, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709568

RESUMEN

Anaerobic digestion of lipid-rich wastewater generally suffers from foaming induced by long chain fatty acid (LCFA). However, a systematic understanding of LCFA inhibition, especially the physical inhibition on interfacial interaction still remains unclear. Here, we combined bubble probe atomic force microscope and impinging-jet technique to unravel the interfacial interactions controlled by long chain fatty acids in anaerobic digestion. We showed that LCFA had a significant inhibition on methane production in anaerobic reactors for the inhibition of the conversion of VFAs to methane. By measuring the LCFA influence on methanogenic archaea Methanosarcina acetivorans C2A, the results demonstrated that methanogenesis was limited for substrates utilization but not metabolic pathways. The impinging-jet technique results indicated that LCFA enhanced bubble separation from anaerobic granules and reduced the bubble-bubble coalescence probability. In addition, the bubble probe atomic force microscope (AFM) revealed that LCFA enhanced the adhesion force between bubbles by enhancing electrical double layer (EDL) repulsion and decreasing hydrophobic interactions. Overall, these results complement framework of LCFA inhibition in anerobic digestion and provide a nanomechanical insight into the fundamental interfacial interactions related to bubbles in anaerobic reactors.


Asunto(s)
Ácidos Grasos , Aguas Residuales , Anaerobiosis , Ácidos Grasos/metabolismo , Metano/metabolismo , Reactores Biológicos , Aguas del Alcantarillado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA