Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Electrophoresis ; 44(3-4): 378-386, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200174

RESUMEN

Rapid, direct identification and quantitation of protein charge variants, and assessment of critical quality attributes with high sensitivity are important drivers required to accelerate the development of biotherapeutics. We describe the use of an enhanced microfluidic chip-based integrated imaged capillary isoelectric focusing-mass spectrometry (icIEF-MS) technology to assess multiple quality attributes of intact antibodies in a single run. Results demonstrate comprehensive detection of multiple charge variants of an aglycosylated knob-into-hole bispecific antibody. Upfront, on-chip separation by icIEF coupled to MS provides the orthogonal separation required to resolve and identify acidic posttranslational modifications including difficult-to-detect deamidation and glycation events at the intact protein level. In addition, on-chip UV detection enables pI determination and relative quantitation of charge isoforms. Six charge variant peaks were resolved by icIEF, mobilized toward the on-chip electrospray tip and directly identified by in-line icIEF-MS using a connected quadrupole time-of-flight mass spectrometer. In addition to acidic charge variants, basic variants were identified as C-terminal lysine, N-terminal cyclization, proline amidation, and the combination of modifications (not typically identified by other intact methods), including lysine and one or two hexose additions. Nonspecific chain cleavages were also resolved, along with their acidic charge variants, demonstrating highly sensitive and comprehensive intact antibody multi-attribute characterization within a 15-min run time.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Anticuerpos Monoclonales/análisis , Microfluídica , Focalización Isoeléctrica Capilar , Lisina , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Focalización Isoeléctrica/métodos , Tecnología
2.
Electrophoresis ; 43(11): 1215-1222, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286725

RESUMEN

Protein therapeutics are usually produced in heterogeneous forms during bioproduction and bioprocessing. Heterogeneity results from post-translational modifications that can yield charge variants and require characterization throughout product development and manufacturing. Isoelectric focusing (IEF) with UV detection is one of the most common methods to evaluate protein charge heterogeneity in the biopharmaceutical industry. To identify charge variant peaks, a new imaged microfluidic chip-based isoelectric focusing (icIEF) system coupled directly to mass spectrometry was recently reported. Bridging is required to demonstrate comparability between existing and new technology. As such, here we demonstrate the comparability of the pI value measurement and relative charge species distributions between the icIEF-MS system and the control data from a frequently utilized methodology in the biopharmaceutical industry for several blinded development-phase biopharmaceutical monoclonal antibodies across a wide pI range of 7.3-9.0. Hyphenation of the icIEF system with mass spectrometry enabled direct and detailed structural determination of a test molecule, with masses suggesting acidic and basic shifts are caused by sialic acid additions and the presence of unprocessed lysine residues. In addition, MS analysis further identified several low-abundance glycoforms. The icIEF-MS system provides sample quantification, characterization, and identification of mAb proteoforms without sacrificing icIEF quantification comparability or speed.


Asunto(s)
Productos Biológicos , Electroforesis Capilar , Anticuerpos Monoclonales/análisis , Electroforesis Capilar/métodos , Focalización Isoeléctrica/métodos , Espectrometría de Masas/métodos
3.
Electrophoresis ; 40(23-24): 3084-3091, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31663138

RESUMEN

A microfluidic system has been designed that integrates both imaged capillary isoelectric focusing (iCIEF) separations and downstream MS detection into a single assay. Along with the construction of novel instrumentation and an innovative microfluidic chip, conversion to MS-compatible separation reagents has also been established. Incorporation of 280 nm absorbance iCIEF-MS analysis not only permits photometric quantitation of separated charge isoforms but also facilitates the direct monitoring of analyte focusing and mobilization in real-time. The outcome of this effort is a device with the unique ability to allow for both the characterization and identification of protein charge and mass isoforms in under 15 min. Acquisition, quantitation, and identification of highly resolved intact mAb charge isoforms along with their critical N-linked glycan pairs clearly demonstrate analytical utility of our innovative system. In total, 33 separate molecular features were characterized by the iCIEF-MS system representing a dramatic increase in the ability to monitor multiple intact mAb critical quality attributes in a single comprehensive assay. Unlike previously reported CIEF-MS results, relatively high ampholyte concentrations, of up to 4% v/v, were employed without impacting MS sensitivity, observed to be on the order of 1% composition.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar/métodos , Focalización Isoeléctrica/métodos , Espectrometría de Masas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Anticuerpos Monoclonales/química , Biosimilares Farmacéuticos/análisis , Biosimilares Farmacéuticos/química , Diseño de Equipo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química
4.
Methods Mol Biol ; 1219: 139-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25308267

RESUMEN

Simple Western™ assays are capillary-based electrophoretic immunoassays, similar in scope to SDS-PAGE (molecular weight separation, "size") and IEF (isoelectric focusing, "charge") immunoblotting. The enhanced sensitivity and automation of the Simple Western makes it better suited to cancer diagnostics and research than the traditional Western platform. Because of its smaller sample volume requirements, primary cells, such as those obtained from fine needle aspirates (FNAs), and solid tumor slices may be used to generate quantitative comparable data. The Peggy™ instrument is capable of performing either size or charge assays on up to 96 samples in a single unattended run.


Asunto(s)
Biopsia con Aguja Fina , Western Blotting/instrumentación , Western Blotting/métodos , Animales , Automatización , Electroforesis Capilar , Diseño de Equipo , Colorantes Fluorescentes/normas , Humanos , Ratones , Neoplasias Experimentales/patología
5.
Biochem Biophys Res Commun ; 351(3): 708-12, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17084817

RESUMEN

Phosphorylation and O-GlcNAcylation of keratin 18 (K18) are highly dynamic and involve primarily independent K18 populations. We used in vitro phosphorylation and O-GlcNAcylation of wild-type, phospho-Ser52, glyco-Ser48, and Ser-to-Ala mutant 17mer peptides (K18 amino acids 40-56), which include the major K18 glycosylation (Ser48) and phosphorylation (Ser52) sites, to address whether each modification blocks the other. The glyco-K18 peptide blocks Ser52 phosphorylation by protein kinase C, an in vivo K18 kinase, while the phospho-K18 peptide blocks its O-GlcNAcylation. Our findings support the reciprocity of these two post-translational modifications. Therefore, regulation of protein Ser/Thr phosphorylation and glycosylation at proximal sites can be interdependent and provides a potential mechanism of counter regulation.


Asunto(s)
Glicina/química , Queratina-18/química , Serina/química , Acilación , Sustitución de Aminoácidos , Péptidos/química , Fosforilación , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 103(44): 16153-8, 2006 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17053065

RESUMEN

A previously undescribed isoelectric focusing technology allows cell signaling to be quantitatively assessed in <25 cells. High-resolution capillary isoelectric focusing allows isoforms and individual phosphorylation forms to be resolved, often to baseline, in a 400-nl capillary. Key to the method is photochemical capture of the resolved protein forms. Once immobilized, the proteins can be probed with specific antibodies flowed through the capillary. Antibodies bound to their targets are detected by chemiluminescence. Because chemiluminescent substrates are flowed through the capillary during detection, localized substrate depletion is overcome, giving excellent linearity of response across several orders of magnitude. By analyzing pan-specific antibody signals from individual resolved forms of a protein, each of these can be quantified, without the problems associated with using multiple antibodies with different binding avidities to detect individual protein forms.


Asunto(s)
Focalización Isoeléctrica/métodos , Proteínas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Humanos , Punto Isoeléctrico , Fosforilación , Isoformas de Proteínas/metabolismo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA