RESUMEN
SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.
Asunto(s)
COVID-19 , Protección Cruzada , SARS-CoV-2 , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Citocinas , Humanos , Ratones , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricosRESUMEN
Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.
Asunto(s)
Antígenos CD/metabolismo , Antígeno CD56/inmunología , Infecciones por VIH/patología , VIH/fisiología , Células Asesinas Naturales/inmunología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Carga Viral , Viremia/patología , Antígenos CD/genética , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Células Asesinas Naturales/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Viremia/inmunología , Viremia/metabolismo , Viremia/virologíaRESUMEN
PURPOSE OF REVIEW: This review describes how advances in CyTOF and high-dimensional analysis methods have furthered our understanding of HIV transmission, pathogenesis, persistence, and immunity. RECENT FINDINGS: CyTOF has generated important insight on several aspects of HIV biology: (1) the differences between cells permissive to productive vs. latent HIV infection, and the HIV-induced remodeling of infected cells; (2) factors that contribute to the persistence of the long-term HIV reservoir, in both blood and tissues; and (3) the impact of HIV on the immune system, in the context of both uncontrolled and controlled infection. CyTOF and high-dimensional analysis tools have enabled in-depth assessment of specific host antigens remodeled by HIV, and have revealed insights into the features of HIV-infected cells enabling them to survive and persist, and of the immune cells that can respond to and potentially control HIV replication. CyTOF and other related high-dimensional phenotyping approaches remain powerful tools for translational research, and applied HIV to cohort studies can inform on mechanisms of HIV pathogenesis and persistence, and potentially identify biomarkers for viral eradication or control.
Asunto(s)
Infecciones por VIH , Humanos , Linfocitos T CD4-Positivos , Latencia del Virus , Replicación ViralRESUMEN
CD8+ T cells can potentiate long-lived immunity against COVID-19. We screened longitudinally-sampled convalescent human donors against SARS-CoV-2 tetramers and identified a participant with an immunodominant response against residues 322 to 311 of nucleocapsid (Nuc322-331), a peptide conserved in all variants of concern reported to date. We conducted 38-parameter cytometry by time of flight on tetramer-identified Nuc322-331-specific CD8+ T cells and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins, and took 32 serological measurements. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and Ab pillars of adaptive immunity. Over the approximately six month period of convalescence monitored, we observed a slow and progressive decrease in the activation state and polyfunctionality of Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph node-homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence into a state characteristic of long-lived, self-renewing memory.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Convalecencia , SARS-CoV-2/inmunología , Linfocitos T CD8-positivos/patología , Humanos , Estudios LongitudinalesRESUMEN
BACKGROUND: Endometriosis is a chronic, estrogen-dependent disorder where inflammation contributes to disease-associated symptoms of pelvic pain and infertility. Immune dysfunction includes insufficient immune lesion clearance, a pro-inflammatory endometrial environment, and systemic inflammation. Comprehensive understanding of endometriosis immune pathophysiology in different hormonal milieu and disease severity has been hampered by limited direct characterization of immune populations in endometrium, blood, and lesions. Simultaneous deep phenotyping at single-cell resolution of complex tissues has transformed our understanding of the immune system and its role in many diseases. Herein, we report mass cytometry and high dimensional analyses to study immune cell phenotypes, abundance, activation states, and functions in endometrium and blood of women with and without endometriosis in different cycle phases and disease stages. METHODS: A case-control study was designed. Endometrial biopsies and blood (n = 60 total) were obtained from women with (n = 20, n = 17, respectively) and without (n = 14, n = 9) endometriosis in the proliferative and secretory cycle phases of the menstrual cycle. Two mass cytometry panels were designed: one broad panel and one specific for mononuclear phagocytic cells (MPC), and all samples were multiplexed to characterize both endometrium and blood immune composition at unprecedented resolution. We combined supervised and unsupervised analyses to finely define the immune cell subsets with an emphasis on MPC. Then, association between cell types, protein expression, disease status, and cycle phase were performed. RESULTS: The broad panel highlighted a significant modification of MPC in endometriosis; thus, they were studied in detail with an MPC-focused panel. Endometrial CD91+ macrophages overexpressed SIRPα (phagocytosis inhibitor) and CD64 (associated with inflammation) in endometriosis, and they were more abundant in mild versus severe disease. In blood, classical and intermediate monocytes were less abundant in endometriosis, whereas plasmacytoid dendritic cells and non-classical monocytes were more abundant. Non-classical monocytes were higher in severe versus mild disease. CONCLUSIONS: A greater inflammatory phenotype and decreased phagocytic capacity of endometrial macrophages in endometriosis are consistent with defective clearance of endometrial cells shed during menses and in tissue homeostasis, with implications in endometriosis pathogenesis and pathophysiology. Different proportions of monocytes and plasmacytoid dendritic cells in blood from endometriosis suggest systemically aberrant functionality of the myeloid system opening new venues for the study of biomarkers and therapies for endometriosis.
Asunto(s)
Endometriosis , Estudios de Casos y Controles , Endometriosis/metabolismo , Endometrio/metabolismo , Endometrio/patología , Femenino , Humanos , Inmunofenotipificación , Inflamación/metabolismoRESUMEN
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Asunto(s)
Vesículas Extracelulares/genética , MicroARNs/genética , Semen/metabolismo , Adulto , Estudios de Cohortes , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Genitales Femeninos , Infecciones por VIH/inmunología , VIH-1/fisiología , Humanos , Masculino , Conducta Sexual , Transcriptoma/genéticaRESUMEN
STUDY QUESTION: Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER: SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY: Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS: eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE: SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA: RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION: This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS: Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Asunto(s)
Decidua , Fibroblastos/citología , Interleucina-11/fisiología , Semen , Estudios Transversales , Decidua/fisiología , Endometriosis , Endometrio/citología , Femenino , Humanos , Interleucina-11/genética , Síndrome del Ovario PoliquísticoRESUMEN
Reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Whether lactocrine deficiency, reflected by low serum immunoglobulin immunocrit (iCrit), affects patterns of endometrial gene expression during the periattachment period of early pregnancy is unknown. Here, objectives were to determine effects of low iCrit at birth on the adult endometrial transcriptome on pregnancy day (PxD) 13. On the first day of postnatal life, gilts were assigned to high or low iCrit groups. Adult high (n = 8) and low (n = 7) iCrit gilts were bred (PxD 0), and humanely slaughtered on PxD 13 when tissues and fluids were collected. The endometrial transcriptome was defined for each group using mRNAseq and microRNAseq. Reads were mapped to the Sus scrofa 11.1 genome build. Mature microRNAs were annotated using miRBase 21. Differential expression was defined based on fold change (≥ ±1.5). Lactocrine deficiency did not affect corpora lutea number, uterine horn length, uterine wet weight, conceptus recovery, or uterine luminal fluid estrogen content on PxD 13. However, mRNAseq revealed 1157 differentially expressed endometrial mRNAs in high versus low iCrit gilts. Differentially expressed genes had functions related to solute transport, endometrial receptivity, and immune response. Six differentially expressed endometrial microRNAs included five predicted to target 62 differentially expressed mRNAs, affecting similar biological processes. Thus, lactocrine deficiency on the first day of postnatal life can alter uterine developmental trajectory with lasting effects on endometrial responses to pregnancy as reflected at the level of the transcriptome on PxD 13.
Asunto(s)
Endometrio/metabolismo , Sustancias de Crecimiento/deficiencia , Lactancia/fisiología , Preñez , Porcinos , Transcriptoma , Animales , Animales Recién Nacidos , Calostro/fisiología , Implantación del Embrión/efectos de los fármacos , Endometrio/efectos de los fármacos , Endometrio/patología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Sustancias de Crecimiento/farmacología , Embarazo , Preñez/genética , Preñez/metabolismo , Porcinos/genética , Porcinos/metabolismo , Transcriptoma/efectos de los fármacosRESUMEN
Nursing ensures lactocrine delivery of maternally derived, milk-borne bioactive factors to offspring, which affects postnatal development of female reproductive tract tissues. Disruption of lactocrine communication for two days from birth (postnatal day (PND) 0) by feeding milk replacer in lieu of nursing or consumption of colostrum alters porcine uterine gene expression globally by PND 2 and inhibits uterine gland genesis by PND 14. Here, objectives were to determine effects of: (1) nursing or milk replacer feeding from birth; (2) a single dose of colostrum or milk replacer and method of feeding and (3) a single feeding of colostrum or milk replacer, with or without oral supplementation of IGF1, administered at birth on aspects of porcine uterine development at 12-h postnatally. Results indicate nursing for 12 h from birth supports rapid establishment of a uterine developmental program, illustrated by patterns of endometrial cell proliferation, expression of genes associated with uterine wall development and entry into mitosis and establishment of a uterine MMP9/TIMP1 system. A single feeding of colostrum at birth increased endometrial cell proliferation at 12 h, regardless of method of feeding. Oral supplementation of IGF1 was sufficient to support endometrial cell proliferation at 12 h in replacer-fed gilts, and supplementation of colostrum with IGF1 further increased endometrial cell proliferation. Results indicate that lactocrine regulation of postnatal uterine development is initiated with the first ingestion of colostrum. Further, results suggest IGF1 may be lactocrine-active and support a 12-h bioassay, which can be used to identify uterotrophic lactocrine activity.
Asunto(s)
Calostro , Métodos de Alimentación , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Útero/crecimiento & desarrollo , Administración Oral , Animales , Animales Recién Nacidos , Femenino , Embarazo , Porcinos , Útero/efectos de los fármacos , Útero/metabolismoRESUMEN
Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrc(a14) . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate because of a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrc(a14) cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5'phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrc(a14) cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.
Asunto(s)
Factores de Ribosilacion-ADP , Autofagia , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Transducción de Señal , Proteínas de Pez Cebra , Pez Cebra/metabolismo , Factor 6 de Ribosilación del ADP , Animales , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas del Tejido Nervioso/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Transporte de Proteínas , Células Fotorreceptoras Retinianas Conos/fisiología , Pez Cebra/fisiologíaRESUMEN
Factors delivered to offspring in colostrum within 2 days of birth support neonatal porcine uterine development. The uterine mRNA transcriptome is affected by age and nursing during this period. Whether uterine microRNA (miRNA) expression is affected similarly is unknown. Objectives were to (1) determine effects of age and nursing on porcine uterine miRNA expression between birth and postnatal day (PND) 2 using miRNA sequencing (miRNAseq) and; (2) define affected miRNAmRNA interactions and associated biological processes using integrated target prediction analysis. At birth (PND 0), gilts were euthanized, nursed ad libitum, or gavage-fed milk replacer for 48 h. Uteri were collected at birth or 50 h postnatal. MicroRNAseq data were validated using quantitative real-time PCR. Targets were predicted using an established mRNA database generated from the same tissues. For PND 2 versus PND 0 comparisons, 31 differentially expressed (DE) miRNAs were identified for nursed, and 42 DE miRNAs were identified for replacer-fed gilts. Six DE miRNAs were identified for nursed versus replacer-fed gilts on PND 2. Target prediction for inversely correlated DE miRNAmRNA pairings indicated 20 miRNAs targeting 251 mRNAs in nursed, versus 29 miRNAs targeting 585 mRNAs in replacer-fed gilts for PND 2 versus PND 0 comparisons, and 5 miRNAs targeting 81 mRNAs for nursed versus replacer-fed gilts on PND 2. Biological processes predicted to be affected by age and nursing included cell-to-cell signaling, cell morphology, and tissue morphology. Results indicate novel age- and lactocrine-sensitive miRNAmRNA relationships associated with porcine neonatal uterine development between birth and PND 2
Asunto(s)
Envejecimiento/fisiología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Porcinos/fisiología , Útero/fisiología , Animales , Animales Recién Nacidos , Animales Lactantes , Femenino , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , ARN Mensajero/genéticaRESUMEN
The lactocrine hypothesis for maternal programming of female reproductive tract development is based on the idea that non-nutritive, milk-borne bioactive factors (MbFs), delivered from mother to offspring during nursing, play a role in determining the trajectory of development with long-term consequences in the adult. Porcine female reproductive tract development is completed postnatally, and the period during which maternal support of neonatal growth derives exclusively from colostrum/milk defines a window of opportunity for lactocrine programming of reproductive tissues. Beyond nutrition, milk serves as a delivery system for a variety of bioactive factors. Porcine relaxin is a prototypical MbF. Present in colostrum at highest concentrations at birth, relaxin is transmitted into the circulation of nursing piglets where it can act on Relaxin receptors found in neonatal female reproductive tract tissues. This process is facilitated by the physiology of the maternal-neonatal dyad and the fact that the neonatal gastrointestinal tract is open to absorb macromolecules for a period of time postnatally. Age at first nursing and duration of nursing from birth are also important for porcine female reproductive tract development. These parameters affect both the quality and quantity of colostrum consumed. Disruption of lactocrine signaling by feeding milk replacer from birth altered porcine uterine, cervical, and testicular development by postnatal Day 2. Moreover, insufficient colostrum consumption in nursing piglets can impair uterine capacity to support viable litters of optimal size in adulthood. In the pig, lactocrine signaling supports neonatal organizational events associated with normal reproductive development and may program adult uterine capacity.
Asunto(s)
Calostro/metabolismo , Genitales Femeninos/crecimiento & desarrollo , Genitales Masculinos/crecimiento & desarrollo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Animales , Femenino , Masculino , PorcinosRESUMEN
Human endometrium undergoes cyclic regeneration involving stem/progenitor cells, but the role of resident endometrial mesenchymal stem cells (eMSC) as progenitors of endometrial stromal fibroblasts (eSF) has not been definitively demonstrated. In endometriosis, eSF display progesterone (P4) resistance with impaired decidualization in vivo and in vitro. To investigate eMSC as precursors of eSF and whether endometriosis P4 resistance is inherited from eMSC, we analyzed transcriptomes of eutopic endometrium eMSC and eSF isolated by fluorescence-activated cell sorting (FACS) from endometriosis (eMSCendo, eSFendo) and controls (eMSCcontrol, eSFcontrol) and their derived primary cultures. Differentially expressed lineage-associated genes (LG) of FACS-isolated eMSC and eSF were largely conserved in endometriosis. In culture, eSFcontrol maintained in vitro expression of a subset of eSF LG and decidualized in vitro with P4 The eMSCcontrol cultures differentiated in vitro to eSF lineage, down-regulating eMSC LG and up-regulating eSF LG, showing minimal transcriptome differences versus eSFcontrol cultures and decidualizing in vitro. Cultured eSFendo displayed less in vitro LG stability and did not decidualize in vitro. In vitro, eMSCendo differentiated to eSF lineage but showed more differentially expressed genes versus eSFendo cultures, and did not decidualize in vitro, demonstrating P4 resistance inherited from eMSCendo Compared to controls, cultures from tissue-derived eSFendo uniquely had a pro-inflammatory phenotype not present in eMSCendo differentiated to eSF in vitro, suggesting divergent niche effects for in vivo versus in vitro lineage differentiation. These findings substantiate eMSC as progenitors of eSF and reveal eSF in endometriosis as having P4 resistance inherited from eMSC and a pro-inflammatory phenotype acquired within the endometrial niche.
Asunto(s)
Endometriosis/patología , Endometrio/anomalías , Endometrio/patología , Fibroblastos/fisiología , Inflamación/genética , Células Madre Mesenquimatosas/fisiología , Nicho de Células Madre/genética , Enfermedades Uterinas/genética , Estudios de Casos y Controles , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Endometriosis/genética , Endometriosis/inmunología , Endometriosis/metabolismo , Endometrio/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Transcriptoma/fisiologíaRESUMEN
Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. Here, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemo-immunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance, in over 60% of TNBC patients. Development of a monoclonal antibody (mAb) capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90-100% in animal studies. Single-cell RNA-sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemo-immunotherapy for TNBC.
RESUMEN
Niosomes are vesicular carriers formed by a bilayer shell, which is composed of non-ionic surfactants with the addition of a structural supporting agent. Cholesterol is typically used as an additive to increase the stability or drug entrapment efficiency of niosomes. Although increasing the amount of cholesterol is reported to improve niosomal properties, an excessive amount of cholesterol may not be accommodated in the bilayer shell, and thus remain in the crystalline form in the niosomal solution. The presence of a crystalline phase is a potential risk for further medical application. Therefore, Tween 80-based niosomes were prepared using a well-established thin-film hydration method and organic phase injection method, followed by their thorough characterization in order to estimate the cholesterol incorporation into the niosomal shell. To detect the crystalline phase in the niosomal suspensions, a novel approach based on depolarized dynamic light scattering combined with cryo-transmission electron microscopy, X-ray diffraction and optical microscopy is used to confirm the presence of cholesterol crystals. This method is fast, quantitative, and allows the sample analysis in a natural liquid environment, thus eliminating biased results influenced by sample drying.
Asunto(s)
Desecación , Liposomas , Suspensiones , Dispersión Dinámica de Luz , Microscopía Electrónica de TransmisiónRESUMEN
High-parameter single-cell phenotyping has enabled in-depth classification and interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan features of human immune cells at the single-cell level. We implemented CyTOF-Lec to compare glycan features between different immune subsets from blood and multiple tissue compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches to distinguish preferential infection of cellular subsets from viral-induced remodeling, we demonstrate that HIV upregulates the levels of cell-surface fucose and sialic acid in a cell-intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors, homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells' susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with different susceptibilities to HIV infection was experimentally validated through sorting experiments. Together, these results suggest that HIV remodels not only cellular proteins but also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly different susceptibility to HIV infection.
Living cells have a sugar coating. These sugars include molecules called glycans, which help cells interact with the outside world. The types of sugars on cells can affect their properties, including potentially their susceptibility to infection by viruses, such as the human immunodeficiency virus, HIV. To date, most research examining cells susceptible to HIV has focused on cell surface proteins, not sugars. To study these proteins, researchers had previously covered them in metal-studded antibodies (which stick to proteins) and used a technique called cytometry time of flight, or CyTOF for short, to quantify the levels of these proteins on the surface of cells susceptible to HIV. Adapting this tool to investigate sugars could answer questions about HIV infection. For example, does the virus prefer to infect cells coated in certain sugar molecules? And does it change the pattern of sugars on the surface of the cells it infects? Ma et al. adapted CyTOF to use molecules called lectins (which stick to sugars) in conjunction with the metal-studded antibodies. This made it possible to simultaneously measure the levels of 34 different proteins and 5 different types of sugars on individual cells. The pattern of sugars on the surface of cells from the immune system differed depending on what tissues the cells came from, and what types of cells they were. The results showed that HIV preferred to infect memory CD4 T cells with high levels of two types of sugar: fucose and sialic acid. Furthermore, during infection, the levels of both these sugars increased. Current treatments for HIV keep virus levels low but do not cure the infection. Further research could determine whether sugars have a role to play in HIV persistence. It is possible that the sugar patterns preferred by the virus help it to avoid detection. A clearer understanding of cell surface sugars could lead to sugar-targeting drugs that kill infected cells.
Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Susceptibilidad a Enfermedades , Fucosa , Glicómica , VIH-1/fisiología , Humanos , Ácido N-Acetilneuramínico , PolisacáridosRESUMEN
The efficacy of HIV pre-exposure prophylaxis (PrEP) is high in men who have sex with men, but much more variable in women, in a manner largely attributed to low adherence. This reduced efficacy, however, could also reflect biological factors. Transmission to women is typically via the female reproductive tract (FRT), and vaginal dysbiosis, genital inflammation, and other factors specific to the FRT mucosa can all increase transmission risk. We have demonstrated that mucosal fibroblasts from the lower and upper FRT can markedly enhance HIV infection of CD4+ T cells. Given the current testing of tenofovir disoproxil fumarate, cabotegravir, and dapivirine regimens as candidate PrEP agents for women, we set out to determine using in vitro assays whether endometrial stromal fibroblasts (eSF) isolated from the FRT can affect the anti-HIV activity of these PrEP drugs. We found that PrEP drugs exhibit significantly reduced antiviral efficacy in the presence of eSFs, not because of decreased PrEP drug availability, but rather of eSF-mediated enhancement of HIV infection. These findings suggest that drug combinations that target both the virus and infection-promoting factors in the FRT-such as mucosal fibroblasts-may be more effective than PrEP alone at preventing sexual transmission of HIV to women.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Minorías Sexuales y de Género , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Femenino , Fibroblastos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Humanos , Masculino , VaginaRESUMEN
T and natural killer (NK) cells are effector cells with key roles in anti-HIV immunity, including in lymphoid tissues, the major site of HIV persistence. However, little is known about the features of these effector cells from people living with HIV (PLWH), particularly from those who initiated antiretroviral therapy (ART) during acute infection. Our study design was to use 42-parameter CyTOF to conduct deep phenotyping of paired blood- and lymph node (LN)-derived T and NK cells from three groups of HIV+ aviremic individuals: elite controllers (N = 5), and ART-suppressed individuals who had started therapy during chronic (N = 6) vs. acute infection (N = 8), the latter of which is associated with better outcomes. We found that acute-treated individuals are enriched for specific subsets of T and NK cells, including blood-derived CD56-CD16+ NK cells previously associated with HIV control, and LN-derived CD4+ T follicular helper cells with heightened expansion potential. An in-depth comparison of the features of the cells from blood vs. LNs of individuals from our cohort revealed that T cells from blood were more activated than those from LNs. By contrast, LNs were enriched for follicle-homing CXCR5+ CD8+ T cells, which expressed increased levels of inhibitory receptors and markers of survival and proliferation as compared to their CXCR5- counterparts. In addition, a subset of memory-like CD56brightTCF1+ NK cells was enriched in LNs relative to blood. These results together suggest unique T and NK cell features in acute-treated individuals, and highlight the importance of examining effector cells not only in blood but also the lymphoid tissue compartment, where the reservoir mostly persists, and where these cells take on distinct phenotypic features.
Asunto(s)
Infecciones por VIH/inmunología , Leucocitos/clasificación , Linfocitos/inmunología , Fenotipo , Respuesta Virológica Sostenida , Adulto , Anciano , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/inmunología , Humanos , Células Asesinas Naturales/inmunología , Leucocitos/inmunología , Linfocitos/clasificación , Masculino , Persona de Mediana EdadRESUMEN
SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.
RESUMEN
BACKGROUND: Pulmonary rehabilitation (PR) is an important therapy for patients with chronic obstructive pulmonary disease (COPD), yet uptake remains low. Intervention strategies which recapitulate the benefits of PR are, therefore, needed and digital, home-based therapies present opportunity in this space. Digital therapies also potentially offer an opportunity to standardize PR in clinical trials for new COPD therapies. AIMS AND METHODS: We aimed to create a digital application (app), Respercise®, consisting of up to 4 strengthening exercises in conjunction with Therbands™ and a daily physical activity program with individualized step goals, and to test its feasibility in a clinical trial. App usability was surveyed qualitatively before development iterations and deployment in a 13-week interventional clinical trial. All participants who completed the study were invited for an exit interview and performed the 5-repetition sit-to-stand test amongst other measures. RESULTS: Feedback from clinical trial participants was positive; 97% of respondents liked the app. A total of 88% of participants reported that it was easy to fit the exercises into their daily routine, and there was over 90% adherence for entering daily step counts. Notably, on day 90 both females and males using Respercise alone demonstrated a 2.22- and 2.27-seconds improvement in time for 5-repetition sit-to-stand tests respectively, above the 1.7 second threshold that is considered clinically meaningful in COPD. CONCLUSIONS: Respercise can be successfully deployed in clinical trials, offering the opportunity for standardization of exercise in clinical trials and, with further development, could have wider reach as a home-based intervention for individuals with COPD.