Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurocrit Care ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443709

RESUMEN

BACKGROUND: Early posttraumatic brain injury (TBI) tranexamic acid (TXA) may reduce blood-brain barrier (BBB) permeability, but it is unclear if this effect is fixed regardless of dose. We hypothesized that post-TBI TXA demonstrates a dose-dependent reduction of in vivo penumbral leukocyte mobilization, BBB microvascular permeability, and enhancement of neuroclinical recovery. METHODS: CD1 male mice (n = 40) were randomly assigned to TBI by controlled cortical impact (injury [I]) or sham TBI (S), followed by intravenous bolus of either saline (placebo [P]) or TXA (15, 30, or 60 mg/kg). At 48 h, in vivo pial intravital microscopy visualized live penumbral BBB microvascular leukocytes and albumin leakage. Neuroclinical recovery was assessed by Garcia Neurological Test scores and animal weight changes at 24 h and 48 h after injury. RESULTS: I + TXA60 reduced live penumbral leukocyte rolling compared with I + P (p < 0.001) and both lower TXA doses (p = 0.017 vs. I + TXA15, p = 0.012 vs. I + TXA30). Leukocyte adhesion was infrequent and similar across groups. Only I + TXA60 significantly reduced BBB permeability compared with that in the I + P (p = 0.004) group. All TXA doses improved Garcia Test scores relative to I + P at both 24 h and 48 h (p < 0.001 vs. I + P for all at both time points). Mean 24-h body weight loss was greatest in the I + P (- 8.7 ± 1.3%) group and lowest in the I + TXA15 (- 4.4 ± 1.0%, p = 0.051 vs. I + P) group. CONCLUSIONS: Only higher TXA dosing definitively abrogates penumbral leukocyte mobilization, preserving BBB integrity post TBI. Some neuroclinical recovery is observed, even with lower TXA dosing. Better outcomes with higher dose TXA after TBI may occur secondary to blunting of leukocyte-mediated penumbral cerebrovascular inflammation.

2.
J Surg Res ; 280: 196-203, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35994981

RESUMEN

INTRODUCTION: Beta-blockers (BB) after traumatic brain injury (TBI) accelerate cognitive recovery weeks after injury. BBs also inhibit leukocyte (LEU) mobilization to the penumbral blood brain barrier (BBB) 48-h after TBI. It is unclear whether the latter effects persist longer and accompany the persistent cognitive improvement. We hypothesized that 2 wk of BB after TBI reduce penumbral BBB leukocyte-endothelial interactions. METHODS: Thirty CD1 mice underwent TBI (controlled cortical impact, CCI: 6 m/s velocity, 1 mm depth, 3 mm diameter) or sham craniotomy followed by i.p. saline (NS) or propranolol (1, 2, 4 mg/kg) every 12 h for 14 d. On day 14, in vivo pial intravital microscopy visualized endothelial-LEU interactions and BBB microvascular leakage. Day 14 Garcia neurological test scores and animal weights were compared to preinjury levels reflecting concurrent clinical recovery. RESULTS: LEU rolling was greatest in CCI + NS when compared to sham (P = 0.03). 4 mg/kg propranolol significantly reduced postCCI LEU rolling down to uninjured sham levels (P = 0.03). LEU adhesion and microvascular permeability were not impacted at this time interval. Untreated injured animals (CCI + NS) scored lower Garcia neurological test and greater weight loss recovery at day 14 when compared to preinjury (P < 0.05). Treatment with higher doses of propranolol (2, 4 mg/kg), improved weight loss recovery (P < 0.001). CONCLUSIONS: LEU rolling alone, was influenced by BB therapy 14 d after TBI suggesting that certain penumbral neuroinflammatory cellular effects of BB therapy after TBI persist up to 2 wk after injury potentially explaining the pervasive beneficial effects of BBs on learning and memory.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Animales , Ratones , Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Leucocitos , Propranolol/farmacología , Propranolol/uso terapéutico , Pérdida de Peso
3.
J Trauma Acute Care Surg ; 96(1): 26-34, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853567

RESUMEN

BACKGROUND: Early but not late tranexamic acid (TXA) after TBI preserves blood-brain-barrier integrity, but it is unclear if and how dose timing affects cognitive recovery beyond hours postinjury. We hypothesized that early (1 hour post-TBI) but not late (24 hours post-TBI) TXA administration improves cognitive recovery for 14 days. METHODS: CD1 male mice (n = 25) were randomized to severe TBI (injury [I], by controlled cortical impact) or sham craniotomy (S) followed by intravenous saline at 1 hour (placebo [P1]) or 30 mg/kg TXA at 1 hour (TXA1) or 24 hours (TXA24). Daily body weights, Garcia Neurological Test scores, brain/lung water content, and Morris water maze exercises quantifying swimming traffic in the platform quadrant (zone [Z] 1) and platform area (Z5) were recorded for up to 14 days. RESULTS: Among injured groups, I-TXA1 demonstrated fastest weight gain for 14 days and only I-TXA1 showed rapid (day 1) normalization of Garcia Neurological Test ( p = 0.01 vs. I-P1, I-TXA24). In cumulative spatial trials, compared with I-TXA1, I-TXA24 hindered learning (distance to Z5 and % time in Z1, p < 0.05). Compared with I-TXA1, I-TXA24 showed poorer memory with less Z5 time (0.51 vs. 0.16 seconds, p < 0.01) and Z5 crossing frequency. Unexpectedly, TXA in uninjured animals (S-TXA1) displayed faster weight gain but inferior learning and memory. CONCLUSION: Early TXA appears beneficial for cognitive and behavioral outcomes following TBI, although administration 24 hours postinjury consistently impairs cognitive recovery. Tranexamic acid in sham animals may lead to adverse effects on cognition.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ácido Tranexámico , Animales , Masculino , Ratones , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Aprendizaje por Laberinto , Ácido Tranexámico/farmacología , Aumento de Peso
4.
Artículo en Inglés | MEDLINE | ID: mdl-38767935

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) induces cognitive deficits driven by neuroinflammation and cerebral edema. The commonly used atypical antipsychotic, quetiapine (QTP), has been recently shown to improve post-TBI outcomes. We hypothesized that QTP would thereby improve animal learning and memory 2 weeks after severe TBI. METHODS: CD1 male mice (n = 35) underwent severe TBI (controlled cortical impact, injury, I) or sham craniotomy (S), followed by BID saline (P, placebo) or QTP (10 or 20 mg/kg, IP) for 2 weeks. Animals underwent Morris Water Maze (MWM) exercises to gauge spatial learning and memory. The distance and time required for swimming animals to reach the platform area (Zone 5, Z5) located in quadrant 1 (Zone 1, Z1) was calculated from digital video recordings analyzed using Ethovision software. Animal bodyweights were recorded daily and on day 14, injured cerebral hemispheres were procured for edema determination (wet-to-dry ratio). Intergroup differences were evaluated with ANOVA/Bonferroni correction (p < 0.05). RESULTS: On day 14, animal weight loss recovery was lowest in I + P compared to I + QTP20 and I + QTP10 (p ≤ 0.01 for either). Cerebral edema was greatest in I + P, and only significantly decreased in I + QTP20 (p < 0.05). Both QTP doses similarly improved spatial learning by significantly reducing latency time and travel distance to target zones (p < 0.05). In probe memory trials, only I + QTP20 and not I + QTP10 significantly favored animal reaching or crossing into target zones (p < 0.05). CONCLUSION: Post-TBI QTP reduces brain edema and improves spatial learning and memory with a potential dose dependence impact benefiting memory up to 14 days. These data suggest an unanticipated QTP benefit following brain injury that should be specifically explored.

5.
J Trauma Acute Care Surg ; 95(1): 47-54, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37038259

RESUMEN

BACKGROUND: Tranexamic acid (TXA) given early, but not late, after traumatic brain injury (TBI) appears to improve survival. This may be partly related to TXA-driven profibrinolysis and increased leukocyte (LEU)-mediated inflammation when administered late post-injury. We hypothesized that early TXA (1 hour post-TBI), blunts penumbral, blood-brain barrier (BBB) leukocyte-endothelial cell (LEU-EC) interactions and microvascular permeability, in vivo when compared with late administration (24 hours post-TBI). METHODS: CD1 male mice (n = 35) were randomized to severe TBI (injury by controlled cortical impact; injury: velocity, 6 m/s; depth, 1 mm; diameter, 3 mm) or sham craniotomy followed by intravenous saline (placebo) at 1 hour, or TXA (30 mg/kg) at 1 hour or 24 hours. At 48 hours, in vivo pial intravital microscopy visualized live penumbral LEU-EC interactions and BBB microvascular fluorescent albumin leakage. Neuroclinical recovery was assessed by the Garcia Neurological Test (motor, sensory, reflex, and balance assessments) and body weight loss recovery at 1 and 2 days after injury. Analysis of variance with Bonferroni correction assessed intergroup differences ( p < 0.05). RESULTS: One-hour, but not 24-hour, TXA improved Garcia Neurological Test performance on day 1 post-TBI compared with placebo. Both 1 hour and 24 hours TXA similarly improved day 1 weight loss recovery, but only 1 hour TXA significantly improved weight loss recovery on day 2 compared with placebo ( p = 0.04). No intergroup differences were found in LEU rolling or adhesion between injured animal groups. Compared with untreated injured animals, only TXA at 1 hour reduced BBB permeability. CONCLUSION: Only early post-TBI TXA consistently improves murine neurological recovery. Tranexamic acid preserves BBB integrity but only when administered early. This effect appears independent of LEU-EC interactions and demonstrates a time-sensitive effect that supports only early TXA administration.


Asunto(s)
Antifibrinolíticos , Edema Encefálico , Lesiones Traumáticas del Encéfalo , Ácido Tranexámico , Animales , Masculino , Ratones , Antifibrinolíticos/farmacología , Antifibrinolíticos/uso terapéutico , Barrera Hematoencefálica , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ácido Tranexámico/farmacología , Ácido Tranexámico/uso terapéutico , Pérdida de Peso
6.
J Trauma Acute Care Surg ; 92(5): 781-791, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35045056

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is accompanied by a hyperadrenergic catecholamine state that can cause penumbral neuroinflammation. Prospective human studies demonstrate improved TBI survival with beta blockade (bb), although mechanisms remain unclear. We hypothesized that deranged post-TBI penumbral blood brain barrier (BBB) leukocyte mobilization and permeability are improved by bb. METHODS: CD1 male mice (n = 64) were randomly assigned to severe TBI-controlled cortical impact: 6 m/s velocity, 1 mm depth, 3 mm diameter-or sham craniotomy, and IP injection of either saline or propranolol (1, 2, or 4 mg/kg) every 12 hours for 2 days. At 48 hours, in vivo pial intravital microscopy visualized live endothelial-leukocyte (LEU) interactions and BBB microvascular leakage. Twice daily clinical recovery was assessed by regaining of lost body weight and the Garcia Neurological Test (motor, sensory, reflex, balance assessments). Brain edema was determined by hemispheric wet-to-dry ratios. RESULTS: Propranolol after TBI reduced both in vivo LEU rolling and BBB permeability in a dose-dependent fashion compared with no treatment (p < 0.001). Propranolol reduced cerebral edema (p < 0.001) and hastened recovery of lost body weight at 48 hours (p < 0.01). Compared with no treatment (14.9 ± 0.2), 24-hour Garcia Neurologic Test scores were improved with 2 (15.8 ± 0.2, p = 0.02) and 4 (16.1 ± 0.1, p = 0.001) but not with 1 mg/kg propranolol. CONCLUSION: Propranolol administration reduces post-TBI LEU mobilization and microvascular permeability in the murine penumbral neurovasculature and leads to reduced cerebral edema. This is associated with hastened recovery of post-TBI weight loss and neurologic function with bb treatment. Dose-dependent effects frame a mechanistic relationship between bb and improved human outcomes after TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Animales , Femenino , Masculino , Ratones , Barrera Hematoencefálica , Peso Corporal , Edema Encefálico/etiología , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Leucocitos , Permeabilidad , Propranolol/farmacología , Propranolol/uso terapéutico , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA