RESUMEN
The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.
RESUMEN
The double-shell inertial confinement fusion campaign, which consists of an aluminum ablator, a foam cushion, a high-Z pusher (tungsten or molybdenum), and liquid deuterium-tritium (DT) fuel, aims for its first DT filled implosions on the National Ignition Facility (NIF) in 2024. The high-Z, high density pusher does not allow x-rays to escape the double-shell capsule. Therefore, nuclear diagnostics such as the Gamma Reaction History (GRH) diagnostic on the NIF are crucial for understanding high-Z implosion performance. To optimize the GRH measurement of fusion reaction history and the pusher's areal density, the MCNP6.3-based forward model of the detector was built. When calculating the neutron-induced inelastic gamma ray production, the interaction of neutrons with the compressed fuel was additionally included. By folding the calculated gamma ray spectrum output and the previously calibrated GRH detector responses, the optimum set of GRH energy thresholds for measuring the pusher areal density is determined to be 2.9 and 6.3 MeV for DT double-shell experiments. In addition, the effect of the down-scattering of neutrons on the gamma ray spectrum, the minimum required yield for measurements, and the attenuation of the gamma rays through the pusher are analyzed.
RESUMEN
Inertial Confinement Fusion and Magnetic Confinement Fusion (ICF and MCF) follow different paths toward goals that are largely common. In this paper, the claim is made that progress can be accelerated by learning from each other across the two fields. Examples of successful cross-community knowledge transfer are presented that highlight the gains from working together, specifically in the areas of high-resolution x-ray imaging spectroscopy and neutron spectrometry. Opportunities for near- and mid-term collaboration are identified, including in chemical vapor deposition diamond detector technology, using gamma rays to monitor fusion gain, handling neutron-induced backgrounds, developing radiation hard technology, and collecting fundamental supporting data needed for diagnostic analysis. Fusion research is rapidly moving into the igniting and burning regimes, posing new opportunities and challenges for ICF and MCF diagnostics. This includes new physics to probe, such as alpha heating; increasingly harsher environmental conditions; and (in the slightly longer term) the need for new plant monitoring diagnostics. Substantial overlap is expected in all of these emerging areas, where joint development across the two subfields as well as between public and private researchers can be expected to speed up advancement for all.
RESUMEN
An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.
RESUMEN
The ion temperature varying during inertial confinement fusion implosions changes the amount of Doppler broadening of the fusion products, creating subtle changes in the fusion neutron pulse as it moves away from the implosion. A diagnostic design to try to measure these subtle effects is introduced-leveraging the fast time resolution of gas Cherenkov detectors along with a multi-puck array that converts a small amount of the neutron pulse into gamma-rays, one can measure multiple snapshots of the neutron pulse at intermediate distances. Precise measurements of the propagating neutron pulse, specifically the variation in the peak location and the skew, could be used to infer time-evolved ion temperature evolved during peak compression.
RESUMEN
An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. We describe the experimental improvements that enabled N210808 and present the first experimental measurements from an igniting plasma in the laboratory. Ignition metrics like the product of hot-spot energy and pressure squared, in the absence of self-heating, increased by â¼35%, leading to record values and an enhancement from previous experiments in the hot-spot energy (â¼3×), pressure (â¼2×), and mass (â¼2×). These results are consistent with self-heating dominating other power balance terms. The burn rate increases by an order of magnitude after peak compression, and the hot-spot conditions show clear evidence for burn propagation into the dense fuel surrounding the hot spot. These novel dynamics and thermodynamic properties have never been observed on prior inertial fusion experiments.
RESUMEN
We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev. Lett. 129, 075001 (2022)10.1103/PhysRevLett.129.075001]. This design uses the indirect drive inertial confinement fusion approach to heat and compress a central "hot spot" of deuterium-tritium (DT) fuel using a surrounding dense DT fuel piston. Ignition occurs when the heating from absorption of α particles created in the fusion process overcomes the loss mechanisms in the system for a duration of time. This letter describes key design changes which enabled a â¼3-6× increase in an ignition figure of merit (generalized Lawson criterion) [Phys. Plasmas 28, 022704 (2021)1070-664X10.1063/5.0035583, Phys. Plasmas 25, 122704 (2018)1070-664X10.1063/1.5049595]) and an eightfold increase in fusion energy output compared to predecessor experiments. We present simulations of the hot-spot conditions for experiment N210808 that show fundamentally different behavior compared to predecessor experiments and simulated metrics that are consistent with N210808 reaching for the first time in the laboratory "ignition."
RESUMEN
Carbon shell areal density measurements from many types of inertial confinement fusion implosions at the National Ignition Facility (NIF) demonstrate that the final state of the outside portion of the shell is set primarily by capsule coast time, the coasting period between main laser shut off and peak fusion output. However, the fuel areal density does not correlate with the increasing carbon compression. While two-dimensional (2D) radiation-hydrodynamic simulations successfully capture the carbon compression, energy must be added to the simulated fuel-ice layer to reproduce fuel areal density measurements. The data presented demonstrates that the degradation mechanisms that reduce the compressibility of the fuel do not reduce the compressibility of the ablator.
RESUMEN
Measuring gamma rays emitted from nuclear reactions gives insight into their nuclear structure. Notably, there are several nuclear reactions that produce gamma rays at â¼1 MeV-3 MeV energies such as T(4He, γ)7Li, 4He(3He, γ)7Be, and 12C(p, γ)13N, which may solve questions lingering about big-bang nucleosynthesis and stellar nucleosynthesis. To observe 1 MeV-3 MeV gamma rays in an inertial confinement fusion system, a new style of the Cherenkov detector was developed using aerogel and fused silica as a Cherenkov medium. Utilizing the OMEGA laser facility, both aerogel and fused silica media were compared with the existing gas-medium Cherenkov detector to validate the concept. Gamma ray measurements from high yield inertial confinement fusion implosions (deuterium-tritium and deuterium-3He) demonstrated that aerogel and fused silica were viable Cherenkov media, paving the way for a potential optimized detector to make these cross section measurements on OMEGA or the National Ignition Facility.
RESUMEN
The Gamma Reaction History (GRH) diagnostic located at the National Ignition Facility (NIF) measures time resolved gamma rays released from inertial confinement fusion experiments by converting the emitted gamma rays into Cherenkov light. Imploded capsules have a bright 4.4 MeV gamma ray from fusion neutrons inelastically scattering with carbon atoms in the remaining ablator. The strength of the 4.4 MeV gamma ray line is proportional to the capsule's carbon ablator areal density and can be used to understand the dynamics and energy budget of a carbon-based ablator capsule implosion. Historically, the GRH's four gas cells use the energy thresholding from the Cherenkov process to forward fit an estimation of the experiment's complete gamma ray spectrum by modeling the surrounding environment in order to estimate the 4.4 MeV neutron induced carbon gamma ray signal. However, the high number of variables, local minima, and uncertainties in detector sensitivities and relative timing had prevented the routine use of the forward fit to generate carbon areal density measurements. A new, more straightforward process of direct subtraction of deconvolved signals was developed to simplify the extraction of the carbon areal density. Beryllium capsules are used as a calibration to measure the capsule environment with no carbon signal. The proposed method is then used to appropriately subtract and isolate the carbon signal on shots with carbon ablators. The subtraction algorithm achieves good results across all major capsule campaigns, achieving similar results to the forward fit. This method is now routinely used to measure carbon areal density for NIF shots.
RESUMEN
Nuclear reactions that produce γ rays occur in inertial fusion implosions and are commonly measured with Cherenkov detectors. Typically a detector is primarily sensitive to a single reaction, but in some implosions, multiple fusion reactions can occur and are combined in the data. We discuss an analysis technique using multiple thresholded detectors to reproduce the individual burn histories from reactions like DT and HT fusion, which is applicable to separated-reactant mix experiments. Requirements for this technique and resulting analysis uncertainties are quantified using synthetic data.
RESUMEN
The Cherenkov mechanism used in Gas Cherenkov Detectors (GCDs) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic at the National Ignition Facility (NIF), has been limited by the current state-of-the-art photomultiplier tube technology to â¼100 ps. The soon-to-be deployed Pulse Dilation Photomultiplier Tube (PD-PMT) at NIF will allow for temporal resolution comparable to that of the gas cell or â¼10 ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurements of reaction history and ablator areal density (ρR) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations, and burn truncation due to dynamically evolving failure modes may become visible for the first time. Test measurements of the PD-PMT at Atomic Weapons Establishment confirmed that design goals have been met. The PD-PMT provides dilation factors of 2 to 40× in 6 increments. The GCD-3 recently deployed at the NIF has been modified for coupling to a PD-PMT and will soon be making ultrafast measurements.
RESUMEN
Fusion reaction history and ablator areal density measurements for Inertial Confinement Fusion experiments at the National Ignition Facility are currently conducted using the Gamma Reaction History diagnostic (GRH_6m). Future Gas Cherenkov Detectors (GCDs) will ultimately provide â¼100x more sensitivity, reduce the effective temporal response from â¼100 to â¼10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH_6m. The first phase toward next generation GCDs consisted of inserting the existing coaxial GCD-3 detector into a reentrant well which puts it within 4 m of the implosion. Reaction history and ablator gamma measurement results from this Phase I are discussed here. These results demonstrate viability for the follow-on Phases of (II) the use of a revolutionary new pulse-dilation photomultiplier tube to improve the effective measurement bandwidth by >10x relative to current PMT technology; and (III) the design of a NIF-specific "Super" GCD which will be informed by the assessment of the radiation background environment within the well described here.