Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776660

RESUMEN

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Ratones , Femenino , Animales , Telangiectasia Hemorrágica Hereditaria/genética , Células Endoteliales/metabolismo , Factor de Crecimiento Placentario/metabolismo , Hígado/patología , Transducción de Señal , Factor 2 de Diferenciación de Crecimiento/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
2.
J Dtsch Dermatol Ges ; 22(1): 18-21, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884458

RESUMEN

The treatment of metastatic cutaneous melanoma was fundamentally improved by the discovery and introduction of immune checkpoint inhibitors, such as anti-PD-1 and anti-CTLA-4 antibodies, and targeted therapy with BRAF and MEK inhibition. Unfortunately, many patients suffer a relapse due to resistance mechanisms that in part are mediated by organ-specific metastatic sites. Especially, brain and liver metastases are negative predictive factors for both treatment modalities. There is still high unmet clinical need to prevent and treat spread to these organs. Therefore, experimental research should focus on mechanisms of hepatic melanoma metastasis to better understand this process and to identify therapeutic targets.


Asunto(s)
Neoplasias Hepáticas , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Recurrencia Local de Neoplasia , Inmunoterapia , Proteínas Proto-Oncogénicas B-raf
3.
Circulation ; 146(23): 1783-1799, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36325910

RESUMEN

BACKGROUND: Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS: ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS: Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, ß-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS: Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Monocitos , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Ligandos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Proteoma , Receptores Depuradores/metabolismo , Ratones Noqueados para ApoE
4.
BMC Cancer ; 23(1): 436, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179302

RESUMEN

BACKGROUND: Liver metastasis is a poor prognostic factor for treatment of advanced cutaneous melanoma with either immunotherapy or targeted therapies. In this study we focused on NRAS mutated melanoma, a cohort with high unmet clinical need. METHODS: WT31 melanoma was repeatedly passaged over the liver after intravenous injections five times generating the subline WT31_P5IV. The colonization of target organs, morphology, vascularization and the gene expression profiles of metastases were analyzed. RESULTS: After intravenous injection lung metastasis was significantly decreased and a trend towards increased liver metastasis was detected for WT31_P5IV as compared to parental WT31. Besides, the ratio of lung to liver metastases was significantly smaller. Histology of lung metastases revealed reduced proliferation of WT31_P5IV in relation to WT31 while both size and necrotic areas were unaltered. Liver metastases of both sublines showed no differences in vascularization, proliferation or necrosis. To identify tumor-intrinsic factors that altered the metastatic pattern of WT31_P5IV RNA sequencing was performed and revealed a differential regulation of pathways involved in cell adhesion. Ex vivo fluorescence imaging confirmed that initial tumor cell retention in the lungs was significantly reduced in WT31_P5IV in comparison to WT31. CONCLUSION: This study demonstrates that tumor-intrinsic properties influencing the metastatic pattern of NRAS mutated melanoma are strongly affected by hepatic passaging and the hematogenous route tumor cells take. It has implications for the clinical setting as such effects might also occur during metastatic spread or disease progression in melanoma patients.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446152

RESUMEN

Liver sinusoidal endothelial cells (LSECs) control clearance of Transforming growth factor, beta-induced, 68kDa (TGFBi) and Periostin (POSTN) through scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2). Stabilin inhibition can ameliorate atherosclerosis in mouse models, while Stabilin-double-knockout leads to glomerulofibrosis. Fibrotic organ damage may pose a limiting factor in future anti-Stabilin therapies. While Stab1-deficient (Stab1-/-) mice were shown to exhibit higher liver fibrosis levels upon challenges, fibrosis susceptibility has not been studied in Stab2-deficient (Stab2-/-) mice. Wildtype (WT), Stab1-/- and Stab2-/- mice were fed experimental diets, and local ligand abundance, hepatic fibrosis, and ligand plasma levels were measured. Hepatic fibrosis was increased in both Stab1-/- and Stab2-/- at baseline. A pro-fibrotic short Methionine-Choline-deficient (MCD) diet induced slightly increased liver fibrosis in Stab1-/- and Stab2-/- mice. A Choline-deficient L-amino acid-defined (CDAA) diet induced liver fibrosis of similar distribution and extent in all genotypes (WT, Stab1-/- and Stab2-/-). A hepatic abundance of Stabilin ligand TGFBi correlated very highly with liver fibrosis levels. In contrast, plasma levels of TGFBi were increased only in Stab2-/- mice after the CDAA diet but not the MCD diet, indicating the differential effects of these diets. Here we show that a single Stabilin deficiency of either Stab1 or Stab2 induces mildly increased collagen depositions under homeostatic conditions. Upon experimental dietary challenge, the local abundance of Stabilin ligand TGFBi was differentially altered in Stabilin-deficient mice, indicating differentially affected LSEC scavenger functions. Since anti-Stabilin-directed therapies are in clinical evaluation for the treatment of diseases, these findings bear relevance to treatment with novel anti-Stabilin agents.


Asunto(s)
Células Endoteliales , Cirrosis Hepática , Ratones , Animales , Células Endoteliales/metabolismo , Ligandos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Colina/metabolismo , Ratones Endogámicos C57BL , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo
6.
J Transl Med ; 20(1): 62, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109875

RESUMEN

BACKGROUND: Cutaneous melanoma exhibits heterogeneous metastatic patterns and prognosis. In this regard, liver metastasis, which is detected in ~ 10-20% of stage 4 patients, came to the fore of melanoma research, as it recently evolved as decisive indicator of treatment resistance to immune checkpoint inhibition. METHODS: Hepatic metastases were induced by intrasplenic injection of five different murine melanoma cell lines. The efficiencies of hepatic colonization, morphologic patterns, gene expression profiles and degree of vascularization were analyzed and Sorafenib was applied as anti-angiogenic treatment. RESULTS: WT31 melanoma showed the highest efficiency of hepatic colonization, while intermediate efficiencies were observed for B16F10 and RET, and low efficiencies for D4M and HCmel12. RNAseq-based gene expression profiles of high and intermediate metastatic melanomas in comparison to low metastatic melanomas indicated that this efficiency predominantly associates with gene clusters involved in cell migration and angiogenesis. Indeed, heterogeneous vascularization patterns were found in the five models. Although the degree of vascularization of WT31 and B16F10 metastases differed, both showed a strong response to Sorafenib with a successful abrogation of the vascularization. CONCLUSION: Our data indicate that molecular heterogeneity of melanomas can be associated with phenotypic and prognostic features of hepatic metastasis paving the way for organ-specific anti-angiogenic therapeutic approaches.


Asunto(s)
Neoplasias Hepáticas , Melanoma , Neoplasias Cutáneas , Animales , Humanos , Inmunoterapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Ratones , Metástasis de la Neoplasia , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neoplasias Cutáneas/patología
7.
Cancer Cell Int ; 22(1): 398, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496412

RESUMEN

BACKGROUND: Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS: Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS: Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION: Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.

8.
J Hepatol ; 74(2): 380-393, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32916216

RESUMEN

BACKGROUND & AIMS: Angiocrine signaling by liver sinusoidal endothelial cells (LSECs) regulates hepatic functions such as growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Herein, we studied the role of endothelial GATA4 in the adult liver and in hepatic pathogenesis. METHODS: We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC-KO) mice with LSEC-specific depletion of Gata4. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in situ hybridization, and LSECs were isolated for gene expression profiling, ChIP- and ATAC-sequencing. Partial hepatectomy was performed to assess regeneration. We used choline-deficient, l-amino acid-defined (CDAA) diet and chronic carbon tetrachloride exposure to model liver fibrosis. Human single cell RNA-seq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. RESULTS: Genetic Gata4 deficiency in LSECs of adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch involving de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated MYC mediated angiocrine Pdgfb expression. As observed in Gata4LSEC-KO livers, CDAA diet-induced perisinusoidal liver fibrosis was associated with GATA4 repression, MYC activation and a profibrotic angiocrine switch in LSECs. Comparison of CDAA-fed Gata4LSEC-KO and control mice demonstrated that endothelial GATA4 indeed protects against dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, GATA4-positive LSECs and endothelial GATA4 target genes were reduced, while non-LSEC endothelial cells and MYC target genes including PDGFB were enriched. CONCLUSIONS: Endothelial GATA4 protects against perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling at the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRß axis offer a promising strategy for prevention and treatment of liver fibrosis. LAY SUMMARY: The liver vasculature is supposed to play a major role in the development of liver fibrosis and cirrhosis, which can lead to liver failure and liver cancer. Herein, we discovered that structural and transcriptional changes induced by genetic deletion of the transcription factor GATA4 in the hepatic endothelium were sufficient to cause liver fibrosis. Activation of the transcription factor MYC and de novo expression of the "angiocrine" growth factor PDGFB were identified as downstream drivers of fibrosis and as potential therapeutic targets for this potentially fatal disease.


Asunto(s)
Células Endoteliales/metabolismo , Factor de Transcripción GATA4/metabolismo , Cirrosis Hepática , Hígado , Linfocinas , Factor de Crecimiento Derivado de Plaquetas , Animales , Cromatina/metabolismo , Descubrimiento de Drogas , Perfilación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/irrigación sanguínea , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Regeneración Hepática/fisiología , Linfocinas/genética , Linfocinas/metabolismo , Ratones , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Dedos de Zinc
9.
Am J Pathol ; 190(2): 358-371, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31783007

RESUMEN

Liver sinusoidal endothelial cells (LSECs) control organ functions, metabolism, and development through the secretion of angiokines. LSECs express hepatocyte growth factor (Hgf), which is involved in prenatal development, metabolic homeostasis, and liver regeneration. This study aimed to elucidate the precise contribution of LSEC-derived Hgf in physiological homeostasis and liver regeneration. Stab2-iCretg/wt;Hgffl/fl (HgfΔLSEC) mice were generated to abrogate Hgf expression selectively in LSECs from early fetal development onwards, to study global development, metabolic and endothelial zonation, and organ functions as well as liver regeneration in response to 70% partial hepatectomy (PH). Although zonation and liver/body weight ratios were not altered, total body weight and total liver weight were reduced in HgfΔLSEC. Necrotic organ damage was more marked in HgfΔLSEC mice, and regeneration was delayed 72 hours after PH. This was associated with decreased hepatocyte proliferation at 48 hours after PH. Molecularly, HgfΔLSEC mice showed down-regulation of Hgf/c-Met signaling and decreased expression of Deptor in hepatocytes. In vitro knockdown of Deptor was associated with decreased proliferation. Therefore, angiocrine Hgf controls hepatocyte proliferation and susceptibility to necrosis after partial hepatectomy via the Hgf/c-Met axis involving Deptor to prevent excessive organ damage.


Asunto(s)
Tamaño Corporal , Proliferación Celular , Factor de Crecimiento de Hepatocito/fisiología , Hepatocitos/citología , Hepatopatías/prevención & control , Regeneración Hepática , Organogénesis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/fisiología , Endotelio/citología , Endotelio/metabolismo , Femenino , Hepatectomía , Hepatocitos/fisiología , Homeostasis , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratones , Ratones Noqueados , Comunicación Paracrina , Transducción de Señal
10.
Exp Dermatol ; 30(11): 1619-1630, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33783869

RESUMEN

The invasiveness of late-stage cutaneous squamous cell carcinoma (cSCC) is associated with poor patients' prognosis and linked to strong upregulation of the glycoprotein Podoplanin (PDPN) in cancer cells. However, the function of PDPN in these processes in cSCC carcinogenesis has not been characterized in detail yet. Employing a CRISPR/Cas9-based loss-of-function approach on murine cSCC cells, we show that the loss of Pdpn results in decreased migration and invasion in vitro. Complementing these in vitro studies, labelled murine control and Pdpn knockout cells were injected orthotopically into the dermis of nude mice to recapitulate the formation of human cSCC displaying a well-differentiated morphology with a PDPN-positive reaction in fibroblasts in the tumor stroma. Smaller tumors were observed upon Pdpn loss, which is associated with reduced tumor cell infiltration into the stroma. Utilizing Pdpn mutants in functional experiments in vitro, we provide evidence that both the intra- and extracellular domains are essential for cancer cell invasion. These findings underline the critical role of PDPN in cSCC progression and highlight potential therapeutic strategies targeting PDPN-dependent cancer cell invasion, especially in late-stage cSCC patients.


Asunto(s)
Carcinoma de Células Escamosas/patología , Glicoproteínas de Membrana/fisiología , Neoplasias Cutáneas/patología , Animales , Ratones , Ratones Desnudos , Invasividad Neoplásica
11.
Mol Psychiatry ; 25(11): 2979-2993, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511635

RESUMEN

Pianp (also known as Leda-1) is a type I transmembrane protein with preferential expression in the mammalian CNS. Its processing is characterized by proteolytic cleavage by a range of proteases including Adam10, Adam17, MMPs, and the γ-secretase complex. Pianp can interact with Pilrα and the GB1a subunit of the GABAB receptor (GBR) complex. A recent case description of a boy with global developmental delay and homozygous nonsense variant in PIANP supports the hypothesis that PIANP is involved in the control of behavioral traits in mammals. To investigate the physiological functions of Pianp, constitutive, global knockout mice were generated and comprehensively analyzed. Broad assessment did not indicate malformation or malfunction of internal organs. In the brain, however, decreased sizes and altered cellular compositions of the dentate gyrus as well as the cerebellum, including a lower number of cerebellar Purkinje cells, were identified. Functionally, loss of Pianp led to impaired presynaptic GBR-mediated inhibition of glutamate release and altered gene expression in the cortex, hippocampus, amygdala, and hypothalamus including downregulation of Erdr1, a gene linked to autism-like behavior. Behavioral phenotyping revealed that Pianp deficiency leads to context-dependent enhanced anxiety and spatial learning deficits, an altered stress response, severely impaired social interaction, and enhanced repetitive behavior, which all represent characteristic features of an autism spectrum disorder-like phenotype. Altogether, Pianp represents a novel candidate gene involved in autism-like behavior, cerebellar and hippocampal pathology, and GBR signaling.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Cerebelo/patología , Eliminación de Gen , Hipocampo/patología , Proteínas del Tejido Nervioso/deficiencia , Receptores de GABA-B/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
12.
Hepatology ; 68(2): 707-722, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29059455

RESUMEN

Postnatal liver development is characterized by hepatocyte growth, proliferation, and functional maturation. Notably, canonical Wnt signaling in hepatocytes has been identified as an important regulator of final adult liver size and metabolic liver zonation. The cellular origin of Wnt ligands responsible for homeostatic liver/body weight ratio (LW/BW) remained unclear, which was also attributable to a lack of suitable endothelial Cre driver mice. To comprehensively analyze the effects of hepatic angiocrine Wnt signaling on liver development and metabolic functions, we used endothelial subtype-specific Stab2-Cre driver mice to delete Wls from hepatic endothelial cells (HECs). The resultant Stab2-Cretg/wt ;Wlsfl/fl (Wls-HECKO) mice were viable, but showed a significantly reduced LW/BW. Specifically, ablation of angiocrine Wnt signaling impaired metabolic zonation in the liver, as shown by loss of pericentral, ß-catenin-dependent target genes such as glutamine synthase (Glul), RhBg, Axin2, and cytochrome P450 2E1, as well as by extended expression of periportal genes such as arginase 1. Furthermore, endothelial subtype-specific expression of a c-terminally YFP-tagged Wls fusion protein in Wls-HECKO mice (Stab2-Cretg/wt ;Wlsfl/fl ;Rosa26:Wls-YFPfl/wt [Wls-rescue]) restored metabolic liver zonation. Interestingly, lipid metabolism was altered in Wls-HECKO mice exhibiting significantly reduced plasma cholesterol levels, while maintaining normal plasma triglyceride and blood glucose concentrations. On the contrary, zonal expression of Endomucin, LYVE1, and other markers of HEC heterogeneity were not altered in Wls-HECKO livers. CONCLUSION: Angiocrine Wnt signaling controls liver growth as well as development of metabolic liver zonation in mice, whereas intrahepatic HEC zonation is not affected. (Hepatology 2017).


Asunto(s)
Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Vía de Señalización Wnt/genética , Animales , Técnica del Anticuerpo Fluorescente , Técnicas de Genotipaje , Homeostasis/fisiología , Inmunohistoquímica , Hibridación in Situ , Metabolismo de los Lípidos/fisiología , Hígado/crecimiento & desarrollo , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Wnt/metabolismo
13.
Blood ; 129(4): 415-419, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-27903529

RESUMEN

Microvascular endothelial cells (ECs) display a high degree of phenotypic and functional heterogeneity among different organs. Organ-specific ECs control their tissue microenvironment by angiocrine factors in health and disease. Liver sinusoidal endothelial cells (LSECs) are uniquely differentiated to fulfill important organ-specific functions in development, under homeostatic conditions, and in regeneration and liver pathology. Recently, Bmp2 has been identified by us as an organ-specific angiokine derived from LSECs. To study angiocrine Bmp2 signaling in the liver, we conditionally deleted Bmp2 in LSECs using EC subtype-specific Stab2-Cre mice. Genetic inactivation of hepatic angiocrine Bmp2 signaling in Stab2-Cre;Bmp2fl/fl (Bmp2LSECKO) mice caused massive iron overload in the liver and increased serum iron levels and iron deposition in several organs similar to classic hereditary hemochromatosis. Iron overload was mediated by decreased hepatic expression of hepcidin, a key regulator of iron homeostasis. Thus, angiocrine Bmp2 signaling within the hepatic vascular niche represents a constitutive pathway indispensable for iron homeostasis in vivo that is nonredundant with Bmp6. Notably, we demonstrate that organ-specific angiocrine signaling is essential not only for the homeostasis of the respective organ but also for the homeostasis of the whole organism.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Células Endoteliales/metabolismo , Hemocromatosis/genética , Hepcidinas/genética , Homeostasis/genética , Hierro/metabolismo , Hígado/metabolismo , Animales , Proteína Morfogenética Ósea 2/deficiencia , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Capilares/metabolismo , Capilares/patología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica , Hemocromatosis/metabolismo , Hemocromatosis/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepcidinas/metabolismo , Integrasas/genética , Integrasas/metabolismo , Hígado/irrigación sanguínea , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Comunicación Paracrina , Transducción de Señal , Transcripción Genética
16.
J Dtsch Dermatol Ges ; 17(3): 275-285, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30851152

RESUMEN

BACKGROUND AND OBJECTIVES: Primary cutaneous diffuse large B-cell lymphoma, NOS (PCLBCL/NOS) is a rare PCLBCL. Only few data are available for this tumor. The aim of this study was to identify clinical and/or immunohistochemical markers (in addition to Bcl-2) that characterize PCLBCL/NOS, assist in differentiating it from PCLBCL, leg type (PCLBCL/LT) and help to assess the clinical course/prognosis. PATIENTS AND METHODS: Bcl-2- PCLBCL/NOS) cases (n = 14 were compared with Bcl-2+ PCLBCL/LT cases (n = 29). RESULTS: PCLBCL/NOS patients were younger, predominantly male and had better survival rates than patients with PCLBCL/LT. Patients with PCLBCL/NOS presented more often with larger plaques limited to one or two contiguous body regions, whereas PCLBCL/LT cases often presented with disseminated lesions. Neoplastic cells had a higher proliferation rate (Ki67) in PCLBCL/LT patients. The tumor microenvironment of PCLBCL/NOS had a more prominent CD3+ infiltrate. Overall survival data for the whole cohort (n = 37) revealed that female gender and Bcl-2 expression correlated with a worse survival rate. Bcl-6 expression and centroblastic subtype correlated with better outcomes. None of the other markers studied (e.g. GCB/non-GCB subtype) correlated with survival rate. CONCLUSIONS: PCLBCL/NOS and PCLBCL/LT differ in their clinical behavior and outcomes. Bcl-2 still seems to be the best marker for discriminating between these two subgroups. Bcl-2, female gender and Bcl-6 represent prognostic markers for PCLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso/patología , Neoplasias Cutáneas/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Inmunohistoquímica , Pierna , Linfoma de Células B Grandes Difuso/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Cutáneas/mortalidad
17.
Biochem Biophys Res Commun ; 497(1): 32-38, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29408502

RESUMEN

Endothelial cells (EC) along the vascular tree exhibit organ-specific angiodiversity. Compared to most other ECs, liver sinusoidal endothelial cells (LSEC) that constitute the organ-specific microvasculature of the liver are morphologically and functionally unique. Previously, we showed that transcription factor Gata4 acts as a master regulator controlling LSEC differentiation. Upon analysis of the molecular signature of LSEC, we identified GPR182 as a potential LSEC-specific orphan G-protein coupled receptor (GPCR). Here, we demonstrate that GPR182 is expressed by LSEC and by EC with sinusoidal differentiation in spleen, lymph node and bone marrow in healthy human tissues. In a tissue microarray analysis of human hepatocellular carcinoma (HCC) samples, endothelial GPR182 expression was significantly reduced in tumor samples compared to peritumoral liver tissue samples (p = 0.0105). Loss of endothelial GPR182 expression was also seen in fibrotic and cirrhotic liver tissues. In vitro, GPR182 differentially regulated canonical GPCR signaling pathways as shown using reporter luciferase assays in HEK293T cells. Whereas ERK and RhoA signaling were inhibited, CREB and Calcium signaling were activated by ectopic GPR182 overexpression. Our data demonstrate that GPR182 is an endothelial subtype-specific marker for human sinusoidal EC of the liver, spleen, lymph node and bone marrow. In addition, we provide evidence for GPR182-dependent downstream signaling via ERK and SRF pathways that may be involved in regulating endothelial subtype-specific sinusoidal differentiation and sinusoidal functions such as permeability.


Asunto(s)
Diferenciación Celular/fisiología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Neovascularización Fisiológica/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Especificidad de Órganos
18.
Cancer Immunol Immunother ; 67(7): 1147-1157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29799076

RESUMEN

BACKGROUND: T-lymphocytes are involved in tumor progression and regression. Actinic keratoses (AK) are atypical proliferations of keratinocytes of the skin. Some AK progress into invasive cutaneous squamous cell carcinomas (cSCC). Keratoacanthomas (KA) are either classified as a cSCC subtype or a benign tumor with histologic resemblance to well-differentiated cSCC as it is supposed to regress spontaneously. In contrast, cSCC represent malignant tumors that may metastasize. OBJECTIVES: To compare the T-lymphocyte profiles of AK, KA and cSCC in relation to PD-L1 expression. METHODS: Tissue micro-arrays of 103 cases of AK, 43 cases of KA and 106 cases of cSCC were stained by immunohistochemistry for E-cadherin, CD3, CD4, CD8, FOXp3, and the receptor-ligand pair PD-1/PD-L1. Immunohistological scores were computationally determined to assess PD-L1 expression as well as the expression profiles of T-lymphocytes. RESULTS: AK had lower numbers of CD3+ and PD-1+ cells compared to KA and lower numbers of CD3+, CD8+ and PD-1+ cells in comparison with cSCC. KA showed significantly higher numbers of CD4+ and FOXp3+ cells as well as lower numbers of CD8+ cells in comparison with invasive cSCC. cSCC expressed significantly more PD-L1 in comparison with AK and KA. Among cSCC PD-L1 expression was higher in moderately and poorly-differentiated cSCC than in well-differentiated cSCC. Increased PD-L1 expression also correlated with increased numbers of CD4+, CD8+ and FOXp3+ cells in cSCC. CONCLUSIONS: Tumor-associated T-lymphocyte infiltrates showed significant differences between AK, KA and invasive cSCC. PD-L1 expression correlated with invasion of T-cell infiltrates in invasive cSCC.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Escamosas/inmunología , Queratoacantoma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Cutáneas/inmunología , Anciano , Anciano de 80 o más Años , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Queratoacantoma/metabolismo , Queratoacantoma/patología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Tasa de Supervivencia , Microambiente Tumoral
19.
Blood ; 128(6): 805-15, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27268084

RESUMEN

Despite intensive efforts in recent years, a curative therapy for cutaneous T-cell lymphoma (CTCL) has not yet been developed. Therefore, the establishment of new therapeutic approaches with higher efficacy rates and milder side effects is strongly desired. A characteristic feature of the malignant T-cell population in CTCL is resistance toward cell death resulting from constitutive NF-κB activation. Therefore, NF-κB-dependent cell death resistance represents an interesting therapeutic target in CTCL because an NF-κB-directed therapy would leave bystander T cells widely unaffected. We investigated the effects of dimethyl fumarate (DMF) on CTCL cells in vitro and in vivo. DMF induced cell death in primary patient-derived CD4(+) cells and CTCL cell lines, but hardly in T cells from healthy donors. DMF-induced cell death was linked specifically to NF-κB inhibition. To study the impact of DMF in vivo, we developed 2 CTCL xenograft mouse models with different cutaneous localizations of the T-cell infiltrate. DMF treatment delayed the growth of CTCL tumors and prevented formation of distant metastases. In addition, DMF induced increased cell death in primary CTCL tumors and in liver metastases. In summary, DMF treatment represents a remarkable therapeutic option in CTCL because it restores CTCL apoptosis in vitro and in preclinical models in vivo and prevents spreading of the disease to distant sites. DMF treatment is of particular promise in CTCL because DMF is already in successful clinical use in the treatment of psoriasis and multiple sclerosis allowing fast translation into clinical studies in CTCL.


Asunto(s)
Apoptosis/efectos de los fármacos , Dimetilfumarato/uso terapéutico , Inmunosupresores/uso terapéutico , Linfoma Cutáneo de Células T/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Piel/efectos de los fármacos , Animales , Humanos , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Ratones , FN-kappa B/inmunología , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Transducción de Señal/efectos de los fármacos , Piel/inmunología , Piel/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas
20.
Int J Cancer ; 140(8): 1907-1917, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27935036

RESUMEN

Risk stratification of sentinel lymph node biopsy (SNB)-positive patients with malignant melanoma differs among current classification systems. To improve classification of patients with rapidly progressive disease who may profit from adjuvant therapy with novel immune or targeted treatment modalities, a single-center retrospective analysis was performed including all melanoma patients diagnosed with a positive SN at a university-based skin cancer center over a 10-year period (2002-2012) (96 of 419 patients). Sentinel node metastasis mitotic rate (SN-MMR) and further histologic parameters were determined by blinded histological re-evaluation and correlated with clinical follow-up (overall [OS], melanoma-specific [MSS], and disease-free survival [DFS]). Median follow-up was 53 months. In univariate analyses, SN tumor penetrative depth (TPD), maximum tumor diameter (MTD), number of positive SN, SN-MMR and the S-, Rotterdam, RDC, Hannover I and II classification systems correlated with OS, MSS and DFS. Multivariate Cox regression analyses showed that a binary classification system based only on the SN-MMR (<1 vs. ≥1 mitoses/mm2 ) was the strongest independent prognostic indicator for all endpoints analyzed. Kaplan-Meier analyses confirmed binary SN-MMR to be superior to stratify patients into high- and low-risk groups (45.45% vs. 87.92% 5-yr MSS). The general prognostic validity of the published SN classification systems was confirmed. The novel SN-MMR classification system may improve discrimination of patients with slowly and rapidly progressive disease. We therefore propose its implementation into clinical practice as the SN-MMR can be easily and reliably determined in routine pathology reports. Its prognostic value for the selection of patients amenable to adjuvant therapies should be studied in clinical trials.


Asunto(s)
Melanoma/diagnóstico , Mitosis/genética , Pronóstico , Ganglio Linfático Centinela/patología , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Escisión del Ganglio Linfático , Metástasis Linfática/diagnóstico , Metástasis Linfática/genética , Masculino , Melanoma/genética , Melanoma/patología , Persona de Mediana Edad , Estudios Retrospectivos , Biopsia del Ganglio Linfático Centinela , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA