Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Antiviral Res ; 221: 105778, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065245

RESUMEN

The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Cricetinae , Humanos , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Glicoproteína de la Espiga del Coronavirus , Técnicas de Cultivo de Célula , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Biomolecules ; 12(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35053170

RESUMEN

MDM2 is the principal antagonist of the tumor suppressor p53. p53 binds to its cognate DNA element within promoters and activates the transcription of adjacent genes. These target genes include MDM2. Upon induction by p53, the MDM2 protein binds and ubiquitinates p53, triggering its proteasomal degradation and providing negative feedback. This raises the question whether MDM2 can also remove p53 from its target promoters, and whether this also involves ubiquitination. In the present paper, we employ the MDM2-targeted small molecule Nutlin-3a (Nutlin) to disrupt the interaction of MDM2 and p53 in three different cancer cell lines: SJSA-1 (osteosarcoma), 93T449 (liposarcoma; both carrying amplified MDM2), and MCF7 (breast adenocarcinoma). Remarkably, removing Nutlin from the culture medium for less than five minutes not only triggered p53 ubiquitination, but also dissociated most p53 from its chromatin binding sites, as revealed by chromatin immunoprecipitation. This also resulted in reduced p53-responsive transcription, and it occurred much earlier than the degradation of p53 by the proteasome, arguing that MDM2 removes p53 from promoters prior to and thus independent of degradation. Accordingly, the short-term pharmacological inhibition of the proteasome did not alter the removal of p53 from promoters by Nutlin washout. However, when the proteasome inhibitor was applied for several hours, depleting non-conjugated ubiquitin prior to eliminating Nutlin, this compromised the removal of DNA-bound p53, as did an E1 ubiquitin ligase inhibitor. This suggests that the ubiquitination of p53 by MDM2 is necessary for its clearance from promoters. Depleting the MDM2 cofactor MDM4 in SJSA cells did not alter the velocity by that p53 was removed from promoters upon Nutlin washout. We conclude that MDM2 antagonizes p53 not only by covering its transactivation domain and by destabilization, but also by the rapid, ubiquitin-dependent termination of p53-chromatin interactions.


Asunto(s)
Regiones Promotoras Genéticas , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética
3.
Virus Res ; 302: 198469, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090962

RESUMEN

The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Antagonistas del Ácido Fólico/farmacología , Metotrexato/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , COVID-19/virología , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Humanos , ARN Viral/genética , SARS-CoV-2/fisiología , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA