RESUMEN
Fluorescence imaging is an indispensable method for analysis of diverse cellular and molecular processes, enabling, for example, detection of ions, second messengers, or metabolites. Intensity-based approaches, however, are prone to artifacts introduced by changes in fluorophore concentrations. This drawback can be overcome by fluorescence lifetime imaging (FLIM) based on time-correlated single-photon counting. FLIM often necessitates long photon collection times, resulting in strong temporal binning of dynamic processes. Recently, rapidFLIM was introduced, exploiting ultra-low dead-time photodetectors together with rapid electronics. Here, we demonstrate the applicability of rapidFLIM, combined with new and improved correction schemes, for spatiotemporal fluorescence lifetime imaging of low-emission fluorophores in a biological system. Using tissue slices of hippocampi of mice of either sex, loaded with the Na+ indicator ING2, we show that improved rapidFLIM enables quantitative, dynamic imaging of neuronal Na+ signals at a full-frame temporal resolution of 0.5 Hz. Induction of transient chemical ischemia resulted in unexpectedly large Na+ influx, accompanied by considerable cell swelling. Both Na+ loading and cell swelling were dampened on inhibition of TRPV4 channels. Together, rapidFLIM enabled the spatiotemporal visualization and quantification of neuronal Na+ transients at unprecedented speed and independent from changes in cell volume. Moreover, our experiments identified TRPV4 channels as hitherto unappreciated contributors to neuronal Na+ loading on metabolic failure, suggesting this pathway as a possible target to ameliorate excitotoxic damage. Finally, rapidFLIM will allow faster and more sensitive detection of a wide range of dynamic signals with other FLIM probes, most notably those with intrinsic low-photon emission.SIGNIFICANCE STATEMENT FLIM is an indispensable method for analysis of cellular processes. FLIM often necessitates long photon collection periods, requiring the sacrifice of temporal resolution at the expense of spatial information. Here, we demonstrate the applicability of the recently introduced rapidFLIM for quantitative, dynamic imaging with low-emission fluorophores in brain slices. RapidFLIM, combined with improved correction schemes, enabled intensity-independent recording of neuronal Na+ transients at unprecedented full-frame rates of 0.5 Hz. It also allowed quantitative imaging independent from changes in cell volume, revealing a surprisingly strong and hitherto uncovered contribution of TRPV4 channels to Na+ loading on energy failure. Collectively, our study thus provides a novel, unexpected insight into the mechanisms that are responsible for Na+ changes on energy depletion.
Asunto(s)
Isquemia Encefálica/metabolismo , Neuronas/metabolismo , Imagen Óptica/métodos , Sodio/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Isquemia Encefálica/patología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuronas/química , Técnicas de Cultivo de Órganos , Canales Catiónicos TRPV/análisisRESUMEN
Malfunction of astrocytic K+ regulation contributes to the breakdown of extracellular K+ homeostasis during ischemia and spreading depolarization events. Studying astroglial K+ changes is, however, hampered by a lack of suitable techniques. Here, we combined results from fluorescence imaging, ion-selective microelectrodes, and patch-clamp recordings in murine neocortical slices with the calculation of astrocytic [K+]. Brief chemical ischemia caused a reversible ATP reduction and a transient depolarization of astrocytes. Moreover, astrocytic [Na+] increased by 24 mM and extracellular [Na+] decreased. Extracellular [K+] increased, followed by an undershoot during recovery. Feeding these data into the Goldman-Hodgkin-Katz equation revealed a baseline astroglial [K+] of 146 mM, an initial K+ loss by 43 mM upon chemical ischemia, and a transient K+ overshoot of 16 mM during recovery. It also disclosed a biphasic mismatch in astrocytic Na+/K+ balance, which was initially ameliorated, but later aggravated by accompanying changes in pH and bicarbonate, respectively. Altogether, our study predicts a loss of K+ from astrocytes upon chemical ischemia followed by a net gain. The overshooting K+ uptake will promote low extracellular K+ during recovery, likely exerting a neuroprotective effect. The resulting late cation/anion imbalance requires additional efflux of cations and/or influx of anions, the latter eventually driving delayed astrocyte swelling.
Asunto(s)
Astrocitos , Neocórtex , Animales , Astrocitos/metabolismo , Homeostasis/fisiología , Isquemia/metabolismo , Ratones , Neocórtex/metabolismo , Potasio/metabolismo , Sodio/metabolismoRESUMEN
Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by â¼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.
Asunto(s)
Astrocitos/fisiología , Región CA1 Hipocampal/fisiología , Neocórtex/fisiología , Intercambiador de Sodio-Calcio/fisiología , Animales , Astrocitos/efectos de los fármacos , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Neocórtex/citología , Neocórtex/efectos de los fármacos , Técnicas de Cultivo de Órganos , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Tiourea/análogos & derivados , Tiourea/farmacologíaRESUMEN
KEY POINTS: Employing quantitative Na+ -imaging and Förster resonance energy transfer-based imaging with ATeam1.03YEMK (ATeam), we studied the relation between activity-induced Na+ influx and intracellular ATP in CA1 pyramidal neurons of the mouse hippocampus. Calibration of ATeam in situ enabled a quantitative estimate of changes in intracellular ATP concentrations. Different paradigms of stimulation that induced global Na+ influx into the entire neuron resulted in decreases in [ATP] in the range of 0.1-0.6 mm in somata and dendrites, while Na+ influx that was locally restricted to parts of dendrites did not evoke a detectable change in dendritic [ATP]. Our data suggest that global Na+ transients require global cellular activation of the Na+ /K+ -ATPase resulting in a consumption of ATP that transiently overrides its production. For recovery from locally restricted Na+ influx, ATP production as well as fast intracellular diffusion of ATP and Na+ might prevent a local drop in [ATP]. ABSTRACT: Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+ ]i ) is mainly mediated by the Na+ /K+ -ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+ ]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i ) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+ ]i oscillations with amplitudes of â¼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3-0.4 mm in both compartments. Global [Na+ ]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i . Our results suggest that ATP consumption by the NKA following global [Na+ ]i transients temporarily overrides its availability, causing a decrease in [ATP]i . Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i , suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.
Asunto(s)
Adenosina Trifosfato/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología , Sodio/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones TransgénicosRESUMEN
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Asunto(s)
Isquemia Encefálica/metabolismo , Calcio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Astrocitos/metabolismo , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Corteza Somatosensorial/metabolismoRESUMEN
Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl- ]int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na+ -K+ -2Cl- cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl- ]int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl- ]int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl- ]int . Other tested chloride channels or chloride transporters do not contribute to [Cl- ]int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K+ -Cl- cotransporter change resting Bergmann glial [Cl- ]int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400.
Asunto(s)
Cloruros/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Líquido Intracelular/metabolismo , Neuroglía/citología , Acetatos/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Benzopiranos/farmacología , Bumetanida/farmacología , Cerebelo/citología , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Indenos/farmacología , Líquido Intracelular/efectos de los fármacos , Ratones , Ratones Transgénicos , Red Nerviosa/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismoRESUMEN
Perivascular endfeet of astrocytes are highly polarized compartments that ensheath blood vessels and contribute to the blood-brain barrier. They experience calcium transients with neuronal activity, a phenomenon involved in neurovascular coupling. Endfeet also mediate the uptake of glucose from the blood, a process stimulated in active brain regions. Here, we demonstrate in mouse hippocampal tissue slices that endfeet undergo sodium signaling upon stimulation of glutamatergic synaptic activity. Glutamate-induced endfeet sodium transients were diminished by TFB-TBOA, suggesting that they were generated by sodium-dependent glutamate uptake. With local agonist application, they could be restricted to endfeet and immunohistochemical analysis revealed prominent expression of glutamate transporters GLAST and GLT-1 localized towards the neuropil vs. the vascular side of endfeet. Endfeet sodium signals spread at an apparent maximum velocity of â¼120 µm/s and directly propagated from stimulated into neighboring endfeet; this spread was omitted in Cx30/Cx43 double-deficient mice. Sodium transients resulted in elevation of intracellular magnesium, indicating a decrease in intracellular ATP. In summary, our results establish that excitatory synaptic activity and stimulation of glutamate uptake in astrocytes trigger transient sodium increases in perivascular endfeet which rapidly spread through gap junctions into neighboring endfeet and cause a reduction of intracellular ATP. The newly discovered endfeet sodium signaling thereby represents a fast, long-lived and inter-cellularly acting indicator of synaptic activity at the blood-brain barrier, which likely constitutes an important component of neuro-metabolic coupling in the brain. GLIA 2017;65:293-308.
Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/citología , Uniones Comunicantes/metabolismo , Ácido Glutámico/metabolismo , Transducción de Señal/fisiología , Sodio/metabolismo , Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Astrocitos/efectos de los fármacos , Conexina 30/deficiencia , Conexina 30/genética , Conexina 43/deficiencia , Conexina 43/genética , Ácido D-Aspártico/farmacología , Femenino , Uniones Comunicantes/efectos de los fármacos , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacologíaRESUMEN
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Astrocitos/metabolismo , Metabolismo Energético/fisiología , Homeostasis/fisiología , Líquido Intracelular/metabolismo , Neuronas/metabolismo , Sodio/metabolismo , Animales , Encéfalo/metabolismo , Humanos , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
Neuronal excitation increases extracellular K(+) concentration ([K(+)]o) in vivo and in incubated brain tissue by stimulation of postsynaptic glutamatergic receptors and by channel-mediated K(+) release during action potentials. Convincing evidence exists that subsequent cellular K(+) reuptake occurs by active transport, normally mediated by Na(+),K(+)-ATPase. This enzyme is expressed both in neurons and in astrocytes but is stimulated by elevated [K(+)]o only in astrocytes. This might lead to an initial K(+) uptake in astrocytes, followed by Kir4.1-mediated release and neuronal reuptake. In cell culture experiments, K(+)-stimulated glycogenolysis is essential for operation of the astrocytic Na(+),K(+)-ATPase resulting from the requirement for glycogenolysis in a pathway leading to uptake of Na(+) for costimulation of its intracellular sodium-binding site. The astrocytic but not the neuronal Na(+),K(+)-ATPase is additionally stimulated by isoproterenol, a ß-adrenergic agonist, but only at nonelevated [K(+)]o. This effect is also glycogenolysis dependent and might play a role during poststimulatory undershoots. Attempts to replicate dependence on glycogenolysis for K(+) reuptake in glutamate-stimulated brain slices showed similar [K(+)]o recovery half-lives in the absence and presence of the glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol. The undershoot was decreased, but to the same extent as an unexpected reduction of peak [K(+)]o increase. A potential explanation for this difference from the cell culture experiments is that astrocytic glutamate uptake might supply the cells with sufficient Na(+). Inhibition of action potential generation by tetrodotoxin caused only a marginal, nonsignificant decrease in stimulated [K(+)]o in brain slices, hindering the evaluation if K(+) reaccumulation after action potential propagation requires glycogenolysis in this preparation.
Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Glucogenólisis/fisiología , Homeostasis/fisiología , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , HumanosRESUMEN
BACKGROUND: Elevated intracranial pressure (ICP) is observed in many neurological pathologies, e.g. hydrocephalus and stroke. This condition is routinely relieved with neurosurgical approaches, since effective and targeted pharmacological tools are still lacking. The carbonic anhydrase inhibitor, acetazolamide (AZE), may be employed to treat elevated ICP. However, its effectiveness is questioned, its location of action unresolved, and its tolerability low. Here, we determined the efficacy and mode of action of AZE in the rat . METHODS: We employed in vivo approaches including ICP and cerebrospinal fluid secretion measurements in anaesthetized rats and telemetric monitoring of ICP and blood pressure in awake rats in combination with ex vivo choroidal radioisotope flux assays and transcriptomic analysis. RESULTS: AZE effectively reduced the ICP, irrespective of the mode of drug administration and level of anaesthesia. The effect appeared to occur via a direct action on the choroid plexus and an associated decrease in cerebrospinal fluid secretion, and not indirectly via the systemic action of AZE on renal and vascular processes. Upon a single administration, the reduced ICP endured for approximately 10 h post-AZE delivery with no long-term changes of brain water content or choroidal transporter expression. However, a persistent reduction of ICP was secured with repeated AZE administrations throughout the day. CONCLUSIONS: AZE lowers ICP directly via its ability to reduce the choroid plexus CSF secretion, irrespective of mode of drug administration.
Asunto(s)
Hipertensión Intracraneal , Presión Intracraneal , Acetazolamida/metabolismo , Acetazolamida/farmacología , Acetazolamida/uso terapéutico , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Hipertensión Intracraneal/tratamiento farmacológico , Presión Intracraneal/fisiología , RatasRESUMEN
BACKGROUND: Disturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the details underlying the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. METHODS: Experimental rats were employed for in vivo determinations of CSF secretion rates, ICP, blood pressure and ex vivo excised choroid plexus for morphological analysis and quantification of expression and activity of various transport proteins. CSF and blood extractions from rats, pigs, and humans were employed for osmolality determinations and a mathematical model employed to determine a contribution from potential local gradients at the surface of choroid plexus. RESULTS: We demonstrate that CSF secretion can occur independently of conventional osmosis and that local osmotic gradients do not suffice to support CSF secretion. Instead, the CSF secretion across the luminal membrane of choroid plexus relies approximately equally on the Na+/K+/2Cl- cotransporter NKCC1, the Na+/HCO3- cotransporter NBCe2, and the Na+/K+-ATPase, but not on the Na+/H+ exchanger NHE1. We demonstrate that pharmacological modulation of CSF secretion directly affects the ICP. CONCLUSIONS: CSF secretion appears to not rely on conventional osmosis, but rather occur by a concerted effort of different choroidal transporters, possibly via a molecular mode of water transport inherent in the proteins themselves. Therapeutic modulation of the rate of CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP.
Asunto(s)
Presión Intracraneal , Proteínas de Transporte de Membrana , Animales , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Humanos , Presión Intracraneal/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ósmosis , Ratas , Sodio/metabolismo , PorcinosRESUMEN
The use of fluorescent chemical indicator dyes enables the dynamic and quantitative imaging of intracellular sodium concentrations and activity-related sodium transients in astrocytes.Here we describe different approaches for the loading of cellular networks or single astrocytes with sodium-sensitive indicators in brain tissue. Fluorescence signals can then be detected and analyzed with conventional camera-based, wide-field imaging or by employing high-resolution multi-photon microscopy. We furthermore explain strategies for the induction of local and global sodium transients in astrocytes. Finally, we illustrate how fluorescence signals derived from such imaging experiments can be converted into absolute changes of sodium concentration in astrocytes based on an in situ calibration procedure.
Asunto(s)
Astrocitos/metabolismo , Imagen Molecular , Transducción de Señal , Sodio/metabolismo , Animales , Colorantes Fluorescentes , Hipocampo/citología , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía/métodos , Imagen Molecular/métodos , Neuronas/metabolismoRESUMEN
One hallmark of adult neurogenesis is its adaptability to environmental influences. Here, we uncovered the epithelial sodium channel (ENaC) as a key regulator of adult neurogenesis as its deletion in neural stem cells (NSCs) and their progeny in the murine subependymal zone (SEZ) strongly impairs their proliferation and neurogenic output in the olfactory bulb. Importantly, alteration of fluid flow promotes proliferation of SEZ cells in an ENaC-dependent manner, eliciting sodium and calcium signals that regulate proliferation via calcium-release-activated channels and phosphorylation of ERK. Flow-induced calcium signals are restricted to NSCs in contact with the ventricular fluid, thereby providing a highly specific mechanism to regulate NSC behavior at this special interface with the cerebrospinal fluid. Thus, ENaC plays a central role in regulating adult neurogenesis, and among multiple modes of ENaC function, flow-induced changes in sodium signals are critical for NSC biology.
Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Líquido Extracelular/metabolismo , Células-Madre Neurales/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Líquido Extracelular/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citologíaRESUMEN
Cerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl- cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics.
Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Agua/metabolismo , Animales , Transporte Biológico Activo , Membrana Celular/metabolismo , Femenino , Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Microscopía Fluorescente , Oocitos/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Xenopus laevisRESUMEN
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of â¼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in â¼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of â¼15% (â¼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 â¼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of â¼3% (â¼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 â¼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.