Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1798(6): 1081-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20188063

RESUMEN

The proinflammatory cytokine tumor necrosis factor (TNF) binds two distinct plasma membrane receptors, TNFR1 and TNFR2. We have produced different receptor mutants fused with enhanced green fluorescent protein to study their membrane dynamics by fluorescence correlation spectroscopy (FCS). TNFR1 mutants show diffusion constants of approximately 1.2 x10(-9)cm(2)/s and a broad distribution of diffusion times, which is hardly affected by ligand binding. However, cholesterol depletion enhances their diffusion, suggesting a constitutive affinity to cholesterol rich membrane microdomains. In contrast, TNFR2 and mutants thereof diffuse rather fast (D=3.1 x10(-9)cm(2)/s) with a marked reduction after 30 min of TNF treatment (D=0.9 x 10(-9)cm(2)/s). This reduction cannot be explained by the formation of higher ordered receptor clusters, since the fluorescence intensity of TNF treated receptors indicate the presence of a few receptor molecules per complex only. Together, these data point to a topological segregation of the two TNF receptors in different microcompartments of the plasma membrane independent of the cytoplasmic signaling domains of the receptors.


Asunto(s)
Microdominios de Membrana/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ligandos , Microdominios de Membrana/genética , Ratones , Ratones Noqueados , Mutación , Estructura Terciaria de Proteína , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/fisiología , Espectrometría de Fluorescencia , Factor de Necrosis Tumoral alfa/metabolismo
2.
Anal Chem ; 78(6): 2039-50, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16536444

RESUMEN

Two general strategies are introduced to identify and quantify single molecules in dilute solutions by employing a spectroscopic method for data registration and specific burst analysis, denoted multiparameter fluorescence detection (MFD). MFD uses pulsed excitation and time-correlated single-photon counting to simultaneously monitor the evolution of the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time and allows for selection of specific events for subsequent analysis. Using the multiple fluorescence dimensions, we demonstrate a dye labeling scheme of oligonucleotides, by which it is possible to identify and separate 16 different compounds in the mixture via their characteristic pattern by MFD. Such identification procedures and multiplex assays with single-molecule sensitivity may have a great impact on screening of species and events that do not lend themselves so easily to amplification, such as disease-specific proteins and their interactions.


Asunto(s)
Microscopía Fluorescente/métodos , Oligonucleótidos/análisis , Polarización de Fluorescencia , Sensibilidad y Especificidad , Factores de Tiempo
3.
Biophys J ; 89(3): 2069-76, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15951373

RESUMEN

Fluorescence correlation spectroscopy (FCS) is now a widely used technique to measure small ensembles of labeled biomolecules with single molecule detection sensitivity (e.g., low endogenous concentrations). Fluorescence cross correlation spectroscopy (FCCS) is a derivative of this technique that detects the synchronous movement of two biomolecules with different fluorescence labels. Both methods can be applied to live cells and, therefore, can be used to address a variety of unsolved questions in cell biology. Applications of FCCS with autofluorescent proteins (AFPs) have been hampered so far by cross talk between the detector channels due to the large spectral overlap of the fluorophores. Here we present a new method that combines advantages of these techniques to analyze binding behavior of proteins in live cells. To achieve this, we have used dual color excitation of a common pair of AFPs, ECFP and EYFP, being discriminated in excitation rather than in emission. This is made possible by pulsed excitation and detection on a shorter timescale compared to the average residence time of particles in the FCS volume element. By this technique we were able to eliminate cross talk in the detector channels and obtain an undisturbed cross correlation signal. The setup was tested with ECFP/EYFP lysates as well as chimeras as negative and positive controls and demonstrated to work in live HeLa cells coexpressing the two fusion proteins ECFP-connexin and EYFP-connexin.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Proteínas Bacterianas/química , Medios de Cultivo/farmacología , Colorantes Fluorescentes/farmacología , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Proteínas Luminiscentes/química , Modelos Estadísticos , Unión Proteica , Proteínas Recombinantes de Fusión/química , Sensibilidad y Especificidad , Transducción de Señal , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA