Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 63(6): 1006-20, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635760

RESUMEN

While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Prolina/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos NOD , Modelos Moleculares , Trasplante de Neoplasias , Oxidación-Reducción , Prolina/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Homología Estructural de Proteína , Análisis de Supervivencia
2.
Mol Cell ; 50(5): 686-98, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746352

RESUMEN

Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.


Asunto(s)
Carboxiliasas/metabolismo , Metabolismo de los Lípidos , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Acetilación , Tejido Adiposo Blanco/metabolismo , Animales , Dieta , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/biosíntesis , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Sirtuinas/genética
3.
Proc Natl Acad Sci U S A ; 111(29): 10574-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002509

RESUMEN

Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.


Asunto(s)
Ciclo del Ácido Cítrico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Metformina/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Nucleótidos/metabolismo , Fenformina/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Biguanidas/farmacología , Línea Celular Transformada , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Ácido Fólico/metabolismo , Glicerofosfatos/metabolismo , Humanos , Lactatos/metabolismo , Metaboloma/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Ribonucleótidos/metabolismo , Tamoxifeno/farmacología , Familia-src Quinasas/metabolismo
4.
Cell Metab ; 32(2): 215-228.e7, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32663458

RESUMEN

Rapid alterations in cellular metabolism allow tissues to maintain homeostasis during changes in energy availability. The central metabolic regulator acetyl-CoA carboxylase 2 (ACC2) is robustly phosphorylated during cellular energy stress by AMP-activated protein kinase (AMPK) to relieve its suppression of fat oxidation. While ACC2 can also be hydroxylated by prolyl hydroxylase 3 (PHD3), the physiological consequence thereof is poorly understood. We find that ACC2 phosphorylation and hydroxylation occur in an inverse fashion. ACC2 hydroxylation occurs in conditions of high energy and represses fatty acid oxidation. PHD3-null mice demonstrate loss of ACC2 hydroxylation in heart and skeletal muscle and display elevated fatty acid oxidation. Whole body or skeletal muscle-specific PHD3 loss enhances exercise capacity during an endurance exercise challenge. In sum, these data identify an unexpected link between AMPK and PHD3, and a role for PHD3 in acute exercise endurance capacity and skeletal muscle metabolism.


Asunto(s)
Grasas/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Línea Celular , Tolerancia al Ejercicio , Femenino , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción
5.
Curr Biol ; 25(13): R569-83, 2015 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26126285

RESUMEN

The nutrient demands of cancer cannot be met by normal cell metabolism. Cancer cells undergo dramatic alteration of metabolic pathways in a process called reprogramming, characterized by increased nutrient uptake and re-purposing of these fuels for biosynthetic, bioenergetic or signaling pathways. Partitioning carbon sources toward growth and away from ATP production necessitates other means of generating energy for biosynthetic reactions. Additionally, cancer cell adaptations frequently lead to increased production of reactive oxygen species and lactic acid, which can be beneficial to cancer growth but also are potentially toxic and must be appropriately cleared. Sirtuins are a family of deacylases and ADP-ribosyltransferases with clear links to regulation of cancer metabolism. Through their unique ability to integrate cellular stress and nutrient status with coordination of metabolic outputs, sirtuins are well poised to play pivotal roles in tumor progression and survival. Here, we review the multi-faceted duties of sirtuins in tackling the metabolic hurdles in cancer. We focus on both beneficial and adverse effects of sirtuins in the regulation of energetic, biosynthetic and toxicity barriers faced by cancer cells.


Asunto(s)
Vías Biosintéticas/fisiología , Transformación Celular Neoplásica/metabolismo , Metabolismo Energético/fisiología , Modelos Biológicos , Neoplasias/fisiopatología , Transducción de Señal/fisiología , Sirtuinas/metabolismo , Gluconeogénesis/fisiología , Humanos , Ácido Láctico/metabolismo , Estructura Molecular , NAD/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/química
6.
Cancer Cell ; 23(4): 450-63, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562301

RESUMEN

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.


Asunto(s)
Daño del ADN , Glutamina/antagonistas & inhibidores , Glutamina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neoplasias Experimentales/genética , Sirtuinas/genética , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Reparación del ADN , Femenino , Glutamina/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Transducción de Señal , Sirtuinas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA