Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ecol Appl ; 31(6): e02389, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34142402

RESUMEN

The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.


Asunto(s)
Minas de Carbón , Contaminantes Químicos del Agua , Animales , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Invertebrados , Minería , Ríos , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Technol ; 54(15): 9228-9234, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32633495

RESUMEN

Mercury (Hg) is a pervasive environmental pollutant and contaminant of concern for both people and wildlife that has been a focus of environmental remediation efforts for decades. A growing body of literature has motivated calls for revising Hg consumption advisories to co-consider selenium (Se) levels in seafood and implies that remediating aquatic ecosystems with ecosystem-scale Se additions could be a robust solution to Hg contamination. Provided that elevated Se concentrations are also known toxicological threats to aquatic animals, we performed a literature search to evaluate the strength of evidence supporting three assertions underpinning the ameliorating benefits of Se: (1) dietary Se reduces MeHg toxicity in consumers; (2) environmental Se reduces Hg bioaccumulation and biomagnification in aquatic food webs; and (3) Se inhibits Hg bioavailability to, and/or methylmercury production by, microbial communities. Limited or ambiguous support for each criterion indicates that many scientific uncertainties and gaps remain regarding Se mediation of Hg behavior and toxicity in abiotic and biotic compartments. Significantly more information is needed to provide a strong scientific basis for modifying current fish consumption advisories on the basis of Se:Hg ratios or for applying Se amendments to remediate Hg-contaminated ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Peces , Humanos , Mercurio/análisis , Selenio/análisis , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 54(7): 3951-3959, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32189492

RESUMEN

Selenium is highly elevated in Appalachian streams and stream organisms that receive alkaline mine drainage from mountaintop removal coal mining compared to unimpacted streams in the region. Adult aquatic insects can be important vectors of waterborne contaminants to riparian food webs, yet pathways of Se transport and exposure of riparian organisms are poorly characterized. We investigated Se concentrations in stream and riparian organisms to determine whether mining extent increased Se uptake in stream biofilms and insects and if these insects were effective Se biovectors to riparian spiders. Biofilm Se concentration increased (p = 0.006) with mining extent, reaching a maximum value of 16.5 µg/g of dw. Insect and spider Se increased with biofilm Se (p = 0.004, p = 0.003), reaching 95 and 26 µg/g of dw, respectively, in mining-impacted streams. Adult insect biomass was not related to mining extent or Se concentrations in biofilm. Even though Se concentrations in aquatic insects were significantly and positively related to mining extent, aquatic insect Se flux was not associated with mining extent because the mass of emerging insects did not change appreciably over the mining gradient. Insect and spider Se concentrations were among the highest reported in the literature, regularly exceeding the bird Se dietary risk threshold of 5 µg/g of dw. Risks of Se exposure and toxicity related to mining are thus not constrained to aquatic systems but extend to terrestrial habitats and food webs.


Asunto(s)
Minas de Carbón , Arañas , Animales , Región de los Apalaches , Cadena Alimentaria , Insectos , Ríos
4.
Ecol Appl ; 26(6): 1758-1770, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27755709

RESUMEN

With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3- ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3- :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3- concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P-limited, both resulting in increased productivity. Long-term measurements of TP and chlorophyll a from the Adirondacks are needed to inform how future decreases in atmospheric N and S deposition will influence the trophic status of lake ecosystems throughout the region.


Asunto(s)
Lluvia Ácida , Contaminantes Ambientales , Lagos/química , Humanos , Concentración de Iones de Hidrógeno , New York , Contaminación del Agua
5.
Environ Sci Technol ; 50(20): 10943-10950, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27649379

RESUMEN

Although there has been a decline in U.S. mercury emissions, the effects of this change on remote ecosystems are not well understood. We examine decadal (2004-2015) responses of atmospheric mercury deposition, along with total mercury (THg) and methylmercury (MeHg) concentrations and fluxes, to decrease in mercury emissions at Arbutus Lake-watershed in the remote forested Adirondack region of New York, a biological mercury hotspot. Although wet mercury deposition remains constant, THg deposition has decreased through decreases in litter mercury inputs (17.9 to 10.8 µg/m2-yr) apparently driven by decreases in atmospheric concentrations of gaseous elemental mercury (Hgo). While the lake is a net sink for THg and MeHg, concentrations and fluxes of THg and MeHg have decreased in the inlet stream and lake water apparently in response to decreases in Hgo deposition. Decreases in surface water mercury have occurred despite decadal increases in concentrations of dissolved organic carbon. Moreover, the fraction of THg as MeHg at the inlet has not changed despite decadal decreases in atmospheric sulfate deposition and surface water concentrations of sulfate. Our results indicate that recent decreases in U.S. mercury emissions have resulted in decreases in litter mercury deposition, and stream and lake THg and MeHg concentrations and fluxes, suggesting the first steps toward ecosystem recovery.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Bosques , Compuestos de Metilmercurio , Contaminantes Químicos del Agua
6.
J Phys Chem A ; 116(16): 4137-43, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22462398

RESUMEN

Photoelectric charging experiments measure heterogeneous uptake coefficients for pyrene on model marine aerosol particles, including NaCl, NaNO(3), and MgCl(2). The analysis employs a multilayer kinetic model that contains adsorption and desorption rate constants for the bare aerosol surface and for pyrene-coated surfaces. First coating the aerosol particles with a pyrene layer and following the desorption using both t-DMA and photoelectric charging yields the desorption rate constants. Separate experiments monitor the increase in surface coverage of initially bare aerosol particles after exposure to pyrene vapor in a sliding-injector flow tube. Analyzing these data using the multilayer model constrained by the measured desorption rate constants yields the adsorption rate constants. The calculated initial heterogeneous uptake coefficient, γ(0)(295 K), is 1.1 × 10(-3) for NaCl, 6.6 × 10(-4) for NaNO(3), and 6.0 × 10(-4) for MgCl(2). The results suggest that a free energy barrier controls the uptake rate rather than kinematics.

7.
Sci Total Environ ; 805: 150189, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818783

RESUMEN

With advances in eDNA metabarcoding, environmental microbiomes are increasingly used as cost-effective tools for monitoring ecosystem health. Stream ecosystems in Central Appalachia, heavily impacted by alkaline drainage from mountaintop coal mining, present ideal opportunities for biomonitoring using stream microbiomes, but the structural and functional responses of microbial communities in different environmental compartments are not well understood. We investigated sediment microbiomes in mining impacted streams to determine how community composition and function respond to mining and to look for potential microbial bioindicators. Using 16s rRNA gene amplicon sequencing, we found that mining leads to shifts in microbial community structure, with the phylum Planctomycetes enriched by 1-6% at mined sites. We observed ~51% increase in species richness in bulk sediments. In contrast, of the 31 predicted metabolic pathways that changed significantly with mining, 23 responded negatively. Mining explained 15-18% of the variance in community structure and S, Se, %C and %N were the main drivers of community and functional pathway composition. We identified 12 microbial indicators prevalent in the ecosystem and sensitive to mining. Overall, alkaline mountaintop mining drainage causes a restructuration of the sediment microbiome, and our study identified promising microbial indicators for the long-term monitoring of these impacted streams.


Asunto(s)
Minas de Carbón , Microbiota , Bacterias/genética , ARN Ribosómico 16S/genética , Ríos
8.
Ecology ; 103(5): e3666, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35171503

RESUMEN

Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions and a large source of landscape change. ASGM occurs throughout the world, including in the Peruvian Amazon. This data set contains measurements of surface water, precipitation, throughfall, leaves, sediment, soil, and air samples from across the Madre de Dios region of Peru, in locations near and remote from ASGM. These data were collected to determine the fate and transport of Hg across the landscape. Samples were collected in 2018 and 2019. Data predominantly included total Hg and methyl Hg concentrations in surface water, precipitation, throughfall, leaves, sediment, soil, and air. Additional water and soil parameters were also measured to better characterize their chemistry. There are no copyright restrictions; please cite this data paper when the data are used in publication.


Asunto(s)
Mercurio , Suelo , Monitoreo del Ambiente , Oro , Mercurio/análisis , Minería , Perú , Hojas de la Planta/química , Agua
9.
Nat Commun ; 13(1): 559, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091543

RESUMEN

Mercury emissions from artisanal and small-scale gold mining throughout the Global South exceed coal combustion as the largest global source of mercury. We examined mercury deposition and storage in an area of the Peruvian Amazon heavily impacted by artisanal gold mining. Intact forests in the Peruvian Amazon near gold mining receive extremely high inputs of mercury and experience elevated total mercury and methylmercury in the atmosphere, canopy foliage, and soils. Here we show for the first time that an intact forest canopy near artisanal gold mining intercepts large amounts of particulate and gaseous mercury, at a rate proportional with total leaf area. We document substantial mercury accumulation in soils, biomass, and resident songbirds in some of the Amazon's most protected and biodiverse areas, raising important questions about how mercury pollution may constrain modern and future conservation efforts in these tropical ecosystems.


Asunto(s)
Atmósfera/análisis , Contaminantes Ambientales/análisis , Oro , Mercurio/análisis , Minería , Bosque Lluvioso , Animales , Atmósfera/química , Aves/clasificación , Aves/metabolismo , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Plumas/química , Gases/análisis , Geografía , Perú , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
10.
Environ Pollut ; 287: 117293, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030024

RESUMEN

Mercury (Hg), a potent neurotoxic element, can biomagnify through food webs once converted into methylmercury (MeHg). Some studies have found that selenium (Se) exposure may reduce MeHg bioaccumulation and toxicity, though this pattern is not universal. Se itself can also be toxic at elevated levels. We experimentally manipulated the relative concentrations of dietary MeHg and Se (as selenomethionine [SeMet]) for an aquatic grazer (the mayfly, Neocloeon triangulifer) and its food source (diatoms). Under low MeHg treatment (0.2 ng/L), diatoms exhibited a quadratic pattern, with decreasing diatom MeHg concentration up to 2.0 µg Se/L and increasing MeHg accumulation at higher SeMet concentrations. Under high MeHg treatment (2 ng/L), SeMet concentrations had no effect on diatom MeHg concentrations. Mayfly MeHg concentrations and biomagnification factors (concentration of MeHg in mayflies: concentration of MeHg in diatoms) declined with SeMet addition only in the high MeHg treatment. Mayfly MeHg biomagnification factors decreased from 5.3 to 3.3 in the high MeHg treatment, while the biomagnification factor was constant with an average of 4.9 in the low MeHg treatment. The benefit of reduced MeHg biomagnification was offset by non-lethal effects and high mortality associated with 'protective' levels of SeMet exposure. Mayfly larvae escape behavior (i.e., startle response) was greatly reduced at early exposure days. Larvae took nearly twice as long to metamorphose to adults at high Se concentrations. The minimum number of days to mayfly emergence did not differ by SeMet exposure, with an average of 13 days. We measured an LC50SeMet for mayflies of 3.9 µg Se/L, with complete mortality at concentrations ≥6.0 µg Se/L. High reproductive mortality occurred at elevated SeMet exposures, with only 0-18% emergence at ≥4.12 µg Se/L. Collectively, our results suggest that while there is some evidence that Se can reduce MeHg accumulation at the base of the food web at specific exposure levels of SeMet and MeHg, Se is also toxic to mayflies and could lead to negative effects that extend across ecosystem boundaries.


Asunto(s)
Ephemeroptera , Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes Químicos del Agua , Animales , Bioacumulación , Ecosistema , Peces , Agua Dulce , Mercurio/análisis , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Environ Pollut ; 291: 118257, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600064

RESUMEN

Aquatic-terrestrial contaminant transport via emerging aquatic insects has been studied across contaminant classes and aquatic ecosystems, but few studies have quantified the magnitude of these insect-mediated contaminant fluxes, limiting our understanding of their drivers. Using a recent conceptual model, we identified watershed mining extent, settling ponds, and network position as potential drivers of selenium (Se) fluxes from a mountaintop coal mining-impacted river network. Mining extent drove insect Se concentration (p = 0.008, R2 = 0.406), but ponding and network position were the principal drivers of Se flux through their impact on insect production. Se fluxes were 18 times higher from ponded, mined tributaries than from unponded ones and were comparable to fluxes from larger, productive mainstem sites. Thus, contaminant fluxes were highest in the river mainstem or below ponds, indicating that without considering controls on insect production, contaminant fluxes and their associated risks for predators like birds and bats can be misestimated.


Asunto(s)
Minas de Carbón , Ríos , Animales , Ecosistema , Insectos , Estanques
12.
Ecology ; 101(9): e03093, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32383151

RESUMEN

Mountaintop removal coal mining is the predominant form of surface mining in the Appalachian Region of the United States and leads to elevated levels of chemical constituents in streams draining mined watersheds. This data set contains measurements of water chemistry in the mountaintop mined landscape of Central Appalachia. These data were collected to determine the accumulation and transport of mercury (Hg) and selenium (Se) across environmental compartments in mountaintop mining-impacted waters as well as the impact of mountaintop mining on the aquatic-terrestrial subsidy. Samples were collected in summer 2017 and spring/summer 2018. Data predominantly include Se, THg, and methylmercury (MeHg) in the following environmental compartments at sites impacted and unimpacted by mountaintop removal coal mining: water, sediment, biofilm, larval cranefly, adult aquatic insects, and spiders. Additional water parameters that have been found to vary across a gradient of mountaintop mining impact (total organic carbon [TOC], total nitrogen [TN], sulfate [SO4 ], nitrate [NO3 ], chloride [Cl], pH, sodium [Na], potassium [K], magnesium [Mg], calcium [Ca], manganese [Mn], sulfur [S], specific conductance) were also measured. The majority of sites represented are headwater streams, although some settling ponds below valley fills are included. This data set also includes taxonomic characterization of the adult aquatic insect community as well as measurements of spider density at a subset of sites. There are no copyright restrictions; please cite this data paper when the data are used in publications.


Asunto(s)
Minas de Carbón , Selenio , Contaminantes Químicos del Agua , Animales , Región de los Apalaches , Monitoreo del Ambiente , Ríos , Selenio/análisis , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis
13.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33246963

RESUMEN

Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area in heavily mined watersheds has increased by 670% between 1985 and 2018 and that lakes in this area convert mercury into methylmercury at net rates five to seven times greater than rivers. These results suggest that synergistic increases in lake area and mercury loading associated with ASGM are substantially increasing exposure risk for people and wildlife. Similarly, marked increases in lake area in other ASGM hot spots suggest that "hydroscape" (hydrological landscape) alteration is an important and previously unrecognized component of mercury risk from ASGM.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Monitoreo del Ambiente , Oro , Humanos , Minería , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA