Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurourol Urodyn ; 37(8): 2441-2451, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29806709

RESUMEN

AIM: To determine the efficacy of human relaxin-2 (hRLX2) in reversing radiation-induced bladder fibrosis and lower urinary tract dysfunction (LUTD). Radiation cystitis is a consequence of radiotherapy for pelvic malignancies. Acutely, irradiation leads to reactive oxygen/nitrogen species in urothelial cells, apoptosis, barrier disruption, and inflammation. Chronically, this results in collagen deposition, bladder fibrosis, and attenuated storage and voiding functions. In severe cases, cystectomies are performed as current therapies do not reverse fibrosis. METHODS: We developed a mouse model for selective bladder irradiation (10 Gray; 1 Gy = 100 rads) resulting in chronic fibrosis within 6 weeks, with decreased bladder compliance, contractility, and overflow incontinence. Seven weeks post-irradiation, female C57Bl/6 mice were continuously infused with hRLX2 (400 µg/kg/day/14 days) or vehicle (saline) via subcutaneous osmotic pumps. Mice were evaluated in vivo using urine spot analysis, cystometrograms and external urethral sphincter electromyograms; and in vitro using length-tension measurements, Western blots, histology, and immunohistochemistry. RESULTS: hRLX2 reversed fibrosis, decreased collagen content, improved bladder wall architecture, and increased bladder compliance, detrusor smooth muscle Cav1.2 expression and detrusor contractility in mice with chronic radiation cystitis. hRLX2 treatment outcomes were likely caused by the activation of RXFP1/2 receptors which are expressed on the detrusor. CONCLUSION: hRLX2 may be a new therapeutic option for rescuing bladders with chronic radiation cystitis.


Asunto(s)
Cistitis/tratamiento farmacológico , Cistitis/patología , Relaxina/uso terapéutico , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Vejiga Urinaria/patología , Vejiga Urinaria/efectos de la radiación , Animales , Canales de Calcio Tipo L/biosíntesis , Canales de Calcio Tipo L/genética , Colágeno/metabolismo , Cistitis/etiología , Electromiografía , Femenino , Fibrosis , Humanos , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Traumatismos por Radiación/complicaciones , Traumatismos por Radiación/tratamiento farmacológico , Proteínas Recombinantes , Uretra/fisiopatología , Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/etiología , Incontinencia Urinaria/tratamiento farmacológico , Incontinencia Urinaria/etiología
2.
Neurourol Urodyn ; 37(8): 2452-2461, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29806700

RESUMEN

AIMS: To determine the role of p75 neurotrophin receptor (p75NTR ) and the therapeutic effect of the selective small molecule p75NTR modulator, LM11A-31, in spinal cord injury (SCI) induced lower urinary tract dysfunction (LTUD) using a mouse model. METHODS: Adult female T8 -T9 transected mice were gavaged daily with LM11A-31 (100 mg/kg) for up to 6 weeks, starting 1 day before, or 7 days following injury. Mice were evaluated in vivo using urine spot analysis, cystometrograms (CMGs), and external urethral sphincter (EUS) electromyograms (EMGs); and in vitro using histology, immunohistochemistry, and Western blot. RESULTS: Our studies confirm highest expression of p75NTRs in the detrusor layer of the mouse bladder and lamina II region of the dorsal horn of the lumbar-sacral (L6 -S1 ) spinal cord which significantly decreased following SCI. LM11A-31 prevented or ameliorated the detrusor sphincter dyssynergia (DSD) and detrusor overactivity (DO) in SCI mice, significantly improving bladder compliance. Furthermore, LM11A-31 treatment blocked the SCI-related urothelial damage and bladder wall remodeling. CONCLUSION: Drugs targeting p75NTRs can moderate DSD and DO in SCI mice, may identify pathophysiological mechanisms, and have therapeutic potential in SCI patients.


Asunto(s)
Isoleucina/análogos & derivados , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/etiología , Morfolinas/uso terapéutico , Receptor de Factor de Crecimiento Nervioso/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Enfermedades de la Vejiga Urinaria/etiología , Animales , Electromiografía , Isoleucina/uso terapéutico , Ratones , Uretra/fisiopatología , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología
4.
Front Syst Neurosci ; 12: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706873

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn's nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a "sensory network" and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA