Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835174

RESUMEN

Extracellular vesicles (EVs) have attracted great attention as potential biomarkers for cancer diagnostics. Although several technologies have been developed for EV detection, many of them are still not applicable to clinical settings as they rely on complex EV isolation processes, while lacking sensitivity, specificity or standardization. To solve this problem, we have developed a sensitive breast cancer-specific EV detection bioassay directly in blood plasma using a fiber-optic surface plasmon resonance (FO-SPR) biosensor, previously calibrated with recombinant EVs. First, we established a sandwich bioassay to detect SK-BR-3 EVs by functionalizing the FO-SPR probes with anti-HER2 antibodies. A calibration curve was built using an anti-HER2/Banti-CD9 combination, resulting in an LOD of 2.1 × 107 particles/mL in buffer and 7 × 108 particles/mL in blood plasma. Next, we investigated the potential of the bioassay to detect MCF7 EVs in blood plasma using an anti-EpCAM/Banti-mix combination, obtaining an LOD of 1.1 × 10 8 particles/mL. Finally, the specificity of the bioassay was proven by the absence of signal when testing plasma samples from 10 healthy people unknown to be diagnosed with breast cancer. The remarkable sensitivity and specificity of the developed sandwich bioassay together with the advantages of the standardized FO-SPR biosensor highlight outstanding potential for the future of EV analysis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Vesículas Extracelulares , Femenino , Humanos , Biomarcadores , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Resonancia por Plasmón de Superficie/métodos
2.
Anal Chem ; 93(15): 6169-6177, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823582

RESUMEN

Antibody characterization is essential for understanding the immune system and development of diagnostics and therapeutics. Current technologies are mainly focusing on the detection of antigen-specific immunoglobulin G (IgG) using bulk singleplex measurements, which lack information on other isotypes and specificity of individual antibodies. Digital immunoassays based on nucleic acid amplification have demonstrated superior performance by allowing the detection of single molecules in a multiplex and sensitive manner. In this study, we demonstrate for the first time an immuno-rolling circle amplification (immuno-RCA) assay for the multiplex detection of three antigen-specific antibody isotypes (IgG, IgA, and IgM) and its integration with microengraving. To validate this approach, we used the autoimmune disease immune-mediated thrombotic thrombocytopenic purpura (iTTP) as the model disease with anti-ADAMTS13 autoantibodies as the diagnostic target molecules. To identify the anti-ADAMTS13 autoantibody isotypes, we designed a pool of three unique antibody-oligonucleotide conjugates for identification and subsequent amplification and visualization via RCA. To validate this approach, we first confirmed an assay specificity of >88% and a low limit of detection of 0.3 ng/mL in the spiked buffer. Subsequently, we performed a dilution series of an iTTP plasma sample for the multiplex detection of the three isotypes with higher sensitivity compared to an enzyme-linked immunosorbent assay. Finally, we demonstrated single-cell analysis of human B cells and hybridoma cells for the detection of secreted antibodies using microengraving and achieved a detection of 23.3 pg/mL secreted antibodies per hour. This approach could help to improve the understanding of antibody isotype distributions and their roles in various diseases.


Asunto(s)
Autoanticuerpos , Púrpura Trombocitopénica Trombótica , Antígenos , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G
3.
Mol Ther ; 28(4): 1068-1077, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32101701

RESUMEN

Checkpoint-inhibiting antibodies elicit impressive clinical responses, but still face several issues. The current study evaluated whether DNA-based delivery can broaden the application of checkpoint inhibitors, specifically by pursuing cost-efficient in vivo production, facilitating combination therapies, and exploring administration routes that lower immune-related toxicity risks. We therefore optimized plasmid-encoded anti-CTLA-4 and anti-PD-1 antibodies, and studied their pharmacokinetics and pharmacodynamics when delivered alone and in combination via intramuscular or intratumoral electroporation in mice. Intramuscular electrotransfer of these DNA-based antibodies induced complete regressions in a subcutaneous MC38 tumor model, with plasma concentrations up to 4 and 14 µg/mL for anti-CTLA-4 and anti-PD-1 antibodies, respectively, and antibody detection for at least 6 months. Intratumoral antibody gene electrotransfer gave similar anti-tumor responses as the intramuscular approach. Antibody plasma levels, however, were up to 70-fold lower and substantially more transient, potentially improving biosafety of the expressed checkpoint inhibitors. Intratumoral delivery also generated a systemic anti-tumor response, illustrated by moderate abscopal effects and prolonged protection of cured mice against a tumor rechallenge. In conclusion, intramuscular and intratumoral DNA-based delivery of checkpoint inhibitors both enabled long-term anti-tumor responses despite distinct systemic antibody exposure, highlighting the potential of the tumor as delivery site for DNA-based therapeutics.


Asunto(s)
Anticuerpos Monoclonales/genética , Neoplasias del Colon/terapia , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Plásmidos/administración & dosificación , Animales , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Sinergismo Farmacológico , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inyecciones Intralesiones , Inyecciones Intramusculares , Ratones , Plásmidos/genética , Receptor de Muerte Celular Programada 1/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Anal Chem ; 92(20): 13880-13887, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32929962

RESUMEN

Autoantibodies are key biomarkers in clinical diagnosis of autoimmune diseases routinely detected by enzyme-linked immunosorbent assays (ELISAs). However, the complexity of these assays is limiting their use in routine diagnostics. Fiber optic-surface plasmon resonance (FO-SPR) can overcome these limitations, but improved surface chemistries are still needed to guarantee detection of autoantibodies in complex matrices. In this paper, we describe the development of an FO-SPR immunoassay for the detection of autoantibodies in plasma samples from immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients. Hereto, hexahistidine-tagged recombinant ADAMTS13 (rADAMTS13-His6) was immobilized on nitrilotriacetic acid (NTA)-coated FO probes chelated by cobalt (Co(III)) and exposed to anti-ADAMTS13 autoantibodies. Initial studies were performed to optimize rADAMTS13-His6 immobilization and to confirm the specificity of the immunoassay for detection of anti-ADAMTS13 autoantibodies with FO-SPR. The performance of the immunoassay was then evaluated by comparing Co(III)- and nickel (Ni(II))-NTA stabilized surfaces, confirming the stable immobilization of the antigen in Co(III)-NTA-functionalized FO probes. A calibration curve was prepared with a dilution series of a cloned human anti-ADAMTS13 autoantibody in ADAMTS13-depleted plasma resulting in an average interassay coefficient of variation of 7.1% and a limit of detection of 0.24 ng/mL. Finally, the FO-SPR immunoassay was validated using seven iTTP patient plasma samples, resulting in an excellent correlation with an in-house-developed ELISA (r = 0.973). In summary, the specificity and high sensitivity in combination with a short time-to-result (2.5 h compared to 4-5 h for a regular ELISA) make the FO-SPR immunoassay a powerful assay for routine diagnosis of iTTP and with extension for any other autoimmune disease.


Asunto(s)
Autoanticuerpos/sangre , Técnicas Biosensibles/métodos , Cobre/química , Ácido Nitrilotriacético/química , Resonancia por Plasmón de Superficie , Proteína ADAMTS13/química , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Tecnología de Fibra Óptica , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/inmunología , Inmunoensayo , Límite de Detección , Oligopéptidos/genética , Oligopéptidos/metabolismo , Púrpura Trombocitopénica Trombótica/diagnóstico
5.
J Immunol ; 196(6): 2879-84, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26843328

RESUMEN

The clinical response in ankylosing spondylitis (AS) patients treated with biologic agents can be influenced by pharmacokinetic variability among and within these patients. Therapeutic drug monitoring is seen as a valuable tool to improve patient care. The aim of this study was to generate a panel of mAbs toward etanercept (ETN) and to determine ETN and anti-ETN concentrations in AS patients. mAbs against ETN (MA-ETN) were generated using hybridoma technology. For quantification of ETN concentrations, a mAb-based TNF-coated ELISA and a mAb/mAb-based sandwich-type ELISA were developed. For evaluation of the anti-ETN Ab response, a bridging ELISA, as well as a functional cell-based assay, were constructed. Disease activity of the AS patients was measured with the AS Disease Activity Score (ASDAS). Active disease was defined as ASDAS ≥ 2.1. A total of 59 of 76 generated mAbs were ETN specific and were characterized further. Fifty-one mAbs revealed inhibitory properties in a cell-based assay. Analysis of serum concentrations of 21 ETN-treated AS patients with the TNF/MA-ETN68C5-HRP ELISA and the MA-ETN63C8/MA-ETN61C1-HRP ELISA revealed a good Pearson's r (+0.974) but a poor intraclass correlation coefficient (+0.528) as the result of underestimation of the values in the former ELISA. At 24 wk, ETN concentrations were similar in patients with ASDAS < 2.1 and ≥ 2.1. Anti-ETN Abs were not detected in any of the patient samples tested. In conclusion, highly sensitive mAb-based immunoassays were developed for quantification of ETN and anti-ETN concentrations. The impact of these methods needs to be evaluated further in clinical practice.


Asunto(s)
Anticuerpos Bloqueadores/metabolismo , Anticuerpos Monoclonales/metabolismo , Etanercept/uso terapéutico , Espondilitis Anquilosante/terapia , Ensayo de Inmunoadsorción Enzimática , Etanercept/inmunología , Etanercept/metabolismo , Humanos , Hibridomas , Monitoreo Fisiológico/métodos , Variaciones Dependientes del Observador , Índice de Severidad de la Enfermedad , Espondilitis Anquilosante/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Bioconjug Chem ; 28(12): 2915-2920, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29191024

RESUMEN

In cancer research, pretargeted positron emission tomography (PET) imaging has emerged as an effective two-step approach that combines the excellent target affinity and selectivity of antibodies with the advantages of using short-lived radionuclides such as fluorine-18. One possible approach is based on the bioorthogonal inverse-electron-demand Diels-Alder (IEDDA) reaction between tetrazines and trans-cyclooctene (TCO) derivatives. Here, we report the first successful use of an 18F-labeled small TCO compound, [18F]1 recently developed in our laboratory, to perform pretargeted immuno-PET imaging. The study was performed in an ovarian carcinoma mouse model, using a trastuzumab-tetrazine conjugate.


Asunto(s)
Ciclooctanos/química , Radioisótopos de Flúor , Neoplasias Ováricas/patología , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Reacción de Cicloadición , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Ratones , Neoplasias Ováricas/diagnóstico por imagen , Distribución Tisular
7.
Blood ; 121(26): 5176-83, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23613519

RESUMEN

Controversy has arisen about the nature of circulating human CD20(+)CD27(+)CD43(+)CD70(-)CD69(-) B cells. Although originally described as being the human counterpart of murine B-1 B cells, some studies have raised the possibility that these might instead be plasmablasts. In this article, we have further characterized the putative B-1 cells and compared them directly with memory B cells and plasmablasts for several functional characteristics. Spontaneous antibody production of different isotypes as well as the induced production of antigen-specific antibodies after vaccination with a T-cell-dependent antigen did not reveal differences between the putative B-1 cells and genuine CD20(-) plasmablasts. Gene expression profiling of different B-cell subsets positioned the phenotype of putative B-1 cells closer to CD20(-) plasmablasts than to memory B cells. Moreover, putative B-1 cells could be differentiated into CD20(-) plasmablasts and plasma cells in vitro, supporting a pre-plasmablast phenotype. In conclusion, characterization of the putative B-1 cells revealed a functional phenotype and a gene expression profile that corresponds to cells that differentiate into CD20(-) plasmablasts. Our data offer perspectives for the investigation of differentiation of B cells into antibody secreting cells.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular , Inmunoglobulinas/inmunología , Memoria Inmunológica/inmunología , Células Plasmáticas/inmunología , Biomarcadores/análisis , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Fenotipo
8.
Ther Drug Monit ; 37(4): 479-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25525757

RESUMEN

BACKGROUND: Determination of infliximab (IFX) serum concentrations has been used for treatment optimization of patients with inflammatory bowel disease. A wide range of enzyme-linked immunosorbent assays (ELISA) exists to quantitate IFX. Most of these assays lack specificity and cross-react with other anti-tumor necrosis factor (TNF) agents. The ability of these IFX assays to detect IFX in complex with antidrug antibodies is not known. The objective of our study was to develop an IFX-specific immunoassay to monitor IFX serum concentrations and to evaluate the impact of antidrug antibodies on the assay performance. METHODS: A panel of monoclonal antibodies toward IFX (MA-IFX) was generated by hybridoma technology and evaluated to replace the polyclonal antibody in a TNF-coated IFX assay. The selected monoclonal antibody-based (MA-based) IFX ELISA was benchmarked to a clinically validated, reference polyclonal antibody-based (pAb-based) IFX ELISA using 209 inflammatory bowel disease serum samples. RESULTS: Fifty-five MA-IFX were generated and grouped into 9 clusters. Of the 22 monoclonal antibodies tested, MA-IFX6B7 was selected for use in the IFX ELISA and the assay was further optimized. MA-IFX6B7 is a high-affinity (KD = 1.40E-09 mol/L), noninhibitory IgG1 antibody that binds to the Fab fragment of IFX and exhibits no cross-reactivity with other anti-TNF drugs. The linearity of an IFX dose-response curve was demonstrated in the range of 1.2-37.5 ng/mL (R = 0.988). The MA-based assay showed a good Pearson correlation (R = 0.986) and agreement (intraclass correlation coefficient = 0.985) with the pAb-based assay. The MA-based assay detects IFX in complex with nonneutralizing anti-IFX antibodies but not when complexed with neutralizing anti-IFX antibodies. CONCLUSIONS: In this study, a highly specific MA-IFX was developed as detection antibody in an ELISA to quantify IFX serum concentrations. The assay was benchmarked to the clinically validated reference pAb-based IFX ELISA.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoensayo/métodos , Infliximab/sangre , Infliximab/inmunología , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/inmunología , Adalimumab/inmunología , Animales , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Infliximab/química , Ratones
9.
Ther Drug Monit ; 36(5): 669-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24906181

RESUMEN

BACKGROUND: Therapeutic drug monitoring of adalimumab (ADM) has been introduced recently. When no detectable ADM serum concentrations can be found, the formation of antidrug antibodies (ADA) should be investigated. A variety of assays to measure the occurrence of ADA have been developed. Results are expressed as arbitrary units or as a titration value. The aim was to develop a monoclonal antibody (MA) that could serve as a universal calibrator to quantify the amount of ADA in ADM-treated patients. METHODS: Hybridoma technology was used to generate a MA toward ADM. The functionality of the MA was tested in a bridging enzyme linked immunosorbent assay (ELISA) setup and in a cell-based assay. Sera from 25 anti-tumor necrosis factor naive patients with inflammatory bowel disease were used to determine the cutoff values. Sera from 9 ADM-treated patients with inflammatory bowel disease, with undetectable serum concentrations of ADM were used to quantify the ADA response. RESULTS: In this study, MA-ADM6A10, an IgG1 that can be used as a calibrator in both an ELISA to quantify the amount of binding antibodies and in a cell-based assay to quantify the amount of neutralizing antibodies, was generated. Combining the results of both assays showed that the sera with high concentrations of anti-ADM binding antibodies also had the highest neutralizing capacity. CONCLUSIONS: The availability of a universal calibrator could facilitate the interlaboratory harmonization of antibody titers in patients who develop anti-adalimumab antibodies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/sangre , Anticuerpos/sangre , Anticuerpos/inmunología , Inmunoensayo/métodos , Inmunoglobulina G/inmunología , Laboratorios/normas , Adalimumab , Antiinflamatorios/sangre , Antiinflamatorios/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Línea Celular Tumoral , Monitoreo de Drogas/métodos , Fibrosarcoma/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Hibridomas/inmunología , Interleucina-6/genética , Interleucina-6/metabolismo
10.
Anal Chem ; 85(21): 10075-82, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24079816

RESUMEN

Ever increasing demands in sensitivity and specificity of biosensors have recently established a trend toward the use of multivalent bioreceptors. This trend has also been introduced in the field of bacteriophage affinity peptides, where the entire phage is used as a receptor rather than the individual peptides. Although this approach is gaining in popularity due to the numerous advantages, binding kinetics of complete phage particles have never been studied in detail, notwithstanding being essential for the efficient design of such applications. In this paper we used an in house developed fiber-optic surface plasmon resonance (FO-SPR) biosensor to study the affinity and binding kinetics of phages, displaying peptide libraries. By using either peptide expression on the p3 or on the p8 coat proteins, a corresponding density of 5 up to more than 2000 peptides on a single virus particle was obtained. Binding parameters of 26 different filamentous phages, displaying peptides selective for enhanced Green Fluorescent Protein (eGFP), were characterized. This study revealed a broad affinity range of phages for the target eGFP, indicating their potential to be used for applications with different requirements in binding kinetics. Moreover, detailed analysis of koff and kon values of several selected p3 and p8 phages, using the FO-SPR biosensor, clearly showed the correlation between the binding parameters and the density at which eGFP-peptides are being expressed. Consequently, although p3 and p8-based phages both revealed exceptionally high affinities for eGFP, two p8 phages were found to have the highest affinity with dissociation constants (Kd) in the femtomolar range.


Asunto(s)
Bacteriófagos/genética , Proteínas Portadoras/análisis , Péptidos/análisis , Resonancia por Plasmón de Superficie/métodos , Proteínas Portadoras/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/química , Péptidos y Proteínas de Señalización Intercelular , Péptidos/genética
11.
Pharmaceutics ; 15(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111645

RESUMEN

DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.

12.
Antiviral Res ; 217: 105700, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562608

RESUMEN

Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 µM, 2.4 µM, 1.3 µM, 2.1 µM and 0.11 µM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 µM and 1.6 µM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.


Asunto(s)
Antivirales , COVID-19 , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , Enzima Convertidora de Angiotensina 2 , Células CACO-2 , Células Vero , SARS-CoV-2 , Unión Proteica , Glicoproteína de la Espiga del Coronavirus
13.
Autoimmun Rev ; 22(4): 103288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738952

RESUMEN

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Neoplasias , Esclerodermia Sistémica , Humanos , Autoanticuerpos/análisis , Anticuerpos Antinucleares , Autoantígenos , Quinasa 9 Dependiente de la Ciclina , Proteínas Nucleares , Proteínas de Ciclo Celular , Factores de Intercambio de Guanina Nucleótido , ATPasas Asociadas con Actividades Celulares Diversas
14.
Front Immunol ; 14: 1050037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895570

RESUMEN

Pre-vaccination SARS-CoV-2 infection can boost protection elicited by COVID-19 vaccination and post-vaccination breakthrough SARS-CoV-2 infection can boost existing immunity conferred by COVID-19 vaccination. Such 'hybrid immunity' is effective against SARS-CoV-2 variants. In order to understand 'hybrid immunity' at the molecular level we studied the complementarity determining regions (CDR) of anti-RBD (receptor binding domain) antibodies isolated from individuals with 'hybrid immunity' as well as from 'naive' (not SARS-CoV-2 infected) vaccinated individuals. CDR analysis was done by liquid chromatography/mass spectrometry-mass spectrometry. Principal component analysis and partial least square differential analysis showed that COVID-19 vaccinated people share CDR profiles and that pre-vaccination SARS-CoV-2 infection or breakthrough infection further shape the CDR profile, with a CDR profile in hybrid immunity that clustered away from the CDR profile in vaccinated people without infection. Thus, our results show a CDR profile in hybrid immunity that is distinct from the vaccination-induced CDR profile.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Regiones Determinantes de Complementariedad/genética , Vacunas contra la COVID-19
15.
Small Methods ; 7(3): e2201477, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642827

RESUMEN

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Asunto(s)
COVID-19 , Microfluídica , Humanos , Microfluídica/métodos , SARS-CoV-2 , Anticuerpos , Saccharomyces cerevisiae/genética
16.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36681898

RESUMEN

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Etnicidad , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Pruebas de Neutralización
17.
J Immunol Methods ; 503: 113245, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248526

RESUMEN

A multiplex assay for the quantitation of immunoglobulin G (IgG) serum antibodies directed against Clostridium tetani toxin (TT), Corynebacterium diphtheriae toxoid (DTxd), and the Bordetella pertussis antigens pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was developed on an Evalution® platform to enhance the evaluation of the specific antibody response towards protein antigens in suspected humoral immunodeficiencies. Evalution® is a microfluidic and microparticle-based platform with the possibility to analyse single samples and to perform real-time kinetic measurements of antibody binding. All individual antigens were covalently linked to the carboxylated microparticles after which samples and fluorescently labelled detection antibodies were flowed over the microparticles in the microfluidic channels of the assay cartridges of the system. The developed assay showed very good sensitivity, specificity, and intra- and inter-assay coefficients of variation (CVs for the different antigens between 1.72-3.53% and 3.54-5.79%, respectively). Furthermore, the correlation of the Evalution pentaplex with a Luminex pentaplex using a panel of 48 human serum samples was excellent, with Spearman correlation coefficients between 0.936 for PT and 0.982 for DTxd (p < 0.0001 for all). Finally, we showed in a proof-of-concept experiment the potential of the Evalution® platform to simultaneously measure concentrations and binding kinetics (as a surrogate for avidity) of the IgG antibodies to the selected protein antigens. Overall, these findings show that this new Evalution pentaplex can accurately measure the antibody response to TT, DTxd, PT, FHA and Prn. It also has the potential to measure antibody binding and dissociation kinetics.


Asunto(s)
Difteria , Tétanos , Tos Ferina , Anticuerpos Antibacterianos , Bordetella pertussis , Humanos , Inmunoensayo , Inmunoglobulina G , Microfluídica , Toxina del Pertussis , Tos Ferina/diagnóstico
18.
Cancer Gene Ther ; 29(7): 984-992, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34754076

RESUMEN

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8+ T cells, and upregulated the expression of CD8+ effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Interleucina-12 , Neoplasias , Animales , Anticuerpos Monoclonales/administración & dosificación , Línea Celular Tumoral , ADN , Terapia Genética , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia , Interleucina-12/genética , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
19.
ACS Sens ; 7(2): 477-487, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35061357

RESUMEN

The ongoing COVID-19 pandemic has emphasized the urgent need for rapid, accurate, and large-scale diagnostic tools. Next to this, the significance of serological tests (i.e., detection of SARS-CoV-2 antibodies) also became apparent for studying patients' immune status and past viral infection. In this work, we present a novel approach for not only measuring antibody levels but also profiling of binding kinetics of the complete polyclonal antibody response against the receptor binding domain (RBD) of SARS-CoV-2 spike protein, an aspect not possible to achieve with traditional serological tests. This fiber optic surface plasmon resonance (FO-SPR)-based label-free method was successfully accomplished in COVID-19 patient serum and, for the first time, directly in undiluted whole blood, omitting the need for any sample preparation. Notably, this bioassay (1) was on par with FO-SPR sandwich bioassays (traditionally regarded as more sensitive) in distinguishing COVID-19 from control samples, irrespective of the type of sample matrix, and (2) had a significantly shorter time-to-result of only 30 min compared to >1 or 4 h for the FO-SPR sandwich bioassay and the conventional ELISA, respectively. Finally, the label-free approach revealed that no direct correlation was present between antibody levels and their kinetic profiling in different COVID-19 patients, as another evidence to support previous hypothesis that antibody-binding kinetics against the antigen in patient blood might play a role in the COVID-19 severity. Taking all this into account, the presented work positions the FO-SPR technology at the forefront of other COVID-19 serological tests, with a huge potential toward other applications in need for quantification and kinetic profiling of antibodies.


Asunto(s)
COVID-19 , Resonancia por Plasmón de Superficie , Anticuerpos Antivirales , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Resonancia por Plasmón de Superficie/métodos
20.
Biosens Bioelectron ; 208: 114189, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35366427

RESUMEN

Therapeutic drug monitoring (TDM) of adalimumab (ADM) at the point-of-care (POC) is key to prevent loss of response but has not been accomplished to date because true POC testing solutions are still lacking. Here, we present a novel "whole blood in - result out" self-powered microfluidic chip for detecting ADM within 30 min to enable TDM at POC. Hereto, we first demonstrated on-chip plasma separation from whole blood, followed by downscaling an ADM ELISA with maintained specificity and sensitivity in plasma. This assay was then performed on a robust and easy-to-use microfluidic chip we designed based on (i)SIMPLE technology, allowing autonomous function upon single finger press activation, which was successfully validated with patient samples. Herein, we prove the potential of our technology to detect targets starting from whole blood introduced directly on-chip and to integrate various immunoassays, both for TDM and other in vitro diagnostics applications, like infectious diseases.


Asunto(s)
Enfermedades Autoinmunes , Técnicas Biosensibles , Adalimumab/uso terapéutico , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Monitoreo de Drogas , Humanos , Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Pruebas en el Punto de Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA