Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111596

RESUMEN

Larval terminal cells of the Drosophila tracheal system generate extensive branched tubes, requiring a huge increase in apical membrane. We discovered that terminal cells compromised for apical membrane expansion - mTOR-vATPase axis and apical polarity mutants - were invaded by the neighboring stalk cell. The invading cell grows and branches, replacing the original single intercellular junction between stalk and terminal cell with multiple intercellular junctions. Here, we characterize disjointed, a mutation in the same phenotypic class. We find that disjointed encodes Drosophila Archease, which is required for the RNA ligase (RtcB) function that is essential for tRNA maturation and for endoplasmic reticulum stress-regulated nonconventional splicing of Xbp1 mRNA. We show that the steady-state subcellular localization of Archease is principally nuclear and dependent upon TOR-vATPase activity. In tracheal cells mutant for Rheb or vATPase loci, Archease localization shifted dramatically from nucleus to cytoplasm. Further, we found that blocking tRNA maturation by knockdown of tRNAseZ also induced compensatory branching. Taken together, these data suggest that the TOR-vATPase axis promotes apical membrane growth in part through nuclear localization of Archease, where Archease is required for tRNA maturation.


Asunto(s)
Proteínas de Drosophila , ARN Ligasa (ATP) , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN Mensajero/genética , ARN de Transferencia/genética , Serina-Treonina Quinasas TOR/genética , Tráquea/metabolismo
2.
PLoS Genet ; 14(1): e1007146, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309404

RESUMEN

During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.


Asunto(s)
Proteínas de Drosophila/fisiología , Matriz Extracelular/fisiología , Morfogénesis/genética , Proteínas Nucleares/fisiología , Uniones Estrechas/genética , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/embriología , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vasos Linfáticos/embriología , Neovascularización Fisiológica/genética , Proteínas Nucleares/genética , Tamaño de los Órganos , Uniones Estrechas/metabolismo , Tráquea/embriología , Tráquea/metabolismo , Factores de Transcripción/genética , Dedos de Zinc
3.
Dev Biol ; 451(1): 79-85, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735663

RESUMEN

The terminal cells of the larval Drosophila tracheal system extend dozens of branched cellular processes, most of which become hollow intracellular tubes that support gas exchange with internal tissues. Previously, we undertook a forward genetic mosaic screen to uncover the pathways regulating terminal cell size, morphogenesis, and the generation and maintenance of new intracellular tubes. Our initial work identified several mutations affecting terminal cell size and branch number, and suggested that branch complexity and cell size are typically coupled but could be genetically separated. To deepen our understanding of these processes, we have further characterized and determined the molecular identities of mutations in the genes sprout, denuded and asthmatic, that had been implicated in our initial screen. Here we reveal the molecular identity of these genes and describe their function in the context of the TOR and Hippo pathways, which are widely appreciated to be key regulators of cell and organ size.


Asunto(s)
Mutación , Tráquea/embriología , Animales , Tamaño de la Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/citología , Larva/metabolismo , Morfogénesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tráquea/citología
4.
Development ; 142(11): 2048-57, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25977367

RESUMEN

Tubes are essential for nutrient transport and gas exchange in multicellular eukaryotes, but how connections between different tube types are maintained over time is unknown. In the Drosophila tracheal system, mutations in oak gall (okg) and conjoined (cnj) confer identical defects, including late onset blockage near the terminal cell-stalk cell junction and the ectopic extension of autocellular, seamed tubes into the terminal cell. We determined that okg and cnj encode the E and G subunits of the vacuolar ATPase (vATPase) and showed that both the V0 and V1 domains are required for terminal cell morphogenesis. Remarkably, the ectopic seamed tubes running along vATPase-deficient terminal cells belonged to the neighboring stalk cells. All vATPase-deficient tracheal cells had reduced apical domains and terminal cells displayed mislocalized apical proteins. Consistent with recent reports that the mTOR and vATPase pathways intersect, we found that mTOR pathway mutants phenocopied okg and cnj. Furthermore, terminal cells depleted for the apical determinants Par6 or aPKC had identical ectopic seamed tube defects. We thus identify a novel mechanism of compensatory branching in which stalk cells extend autocellular tubes into neighboring terminal cells with undersized apical domains. This compensatory branching also occurs in response to injury, with damaged terminal cells being rapidly invaded by their stalk cell neighbor.


Asunto(s)
Drosophila melanogaster/citología , Morfogénesis , Tráquea/citología , Uniones Adherentes/metabolismo , Animales , Polaridad Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Holoenzimas/metabolismo , Espacio Intracelular/metabolismo , Mutación/genética , Subunidades de Proteína/metabolismo , Bombas de Protones , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal , Tráquea/crecimiento & desarrollo , Vacuolas/enzimología
5.
Proc Natl Acad Sci U S A ; 116(49): 24388-24389, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740612
6.
PLoS Genet ; 7(7): e1002087, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21750678

RESUMEN

Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general "house-keeping" genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster , Genes de Insecto , Tráquea/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Heterocigoto , Homocigoto , Morfogénesis , Mutación , Factores de Transcripción/metabolismo
7.
G3 (Bethesda) ; 13(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36653023

RESUMEN

The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system. In the absence of GckIII pathway function, aberrant dilations form in tracheal tubes characterized by mislocalized junctional and apical proteins, suggesting that the pathway is important in maintaining tube integrity in development. Here, we observed a genetic interaction between trc and Cerebral cavernous malformations 3 (Ccm3), the Drosophila ortholog of a human vascular disease gene, supporting our hypothesis that the GckIII pathway functions downstream of Ccm3 in trachea, and potentially in the vertebrate cerebral vasculature. However, how GckIII pathway signaling is regulated and the mechanisms that underpin its function in tracheal development are unknown. We undertook biochemical and genetic approaches to identify proteins that interact with Trc, the most downstream GckIII pathway kinase. We found that known GckIII and NDR scaffold proteins are likely to control GckIII pathway signaling in tracheal development, consistent with their conserved roles in Hippo-like modules. Furthermore, we show genetic interactions between trc and multiple enzymes in glycolysis and oxidative phosphorylation, suggesting a potential function of the GckIII pathway in integrating cellular energy requirements with maintenance of tube integrity.


Asunto(s)
Proteínas de Drosophila , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
8.
Nature ; 441(7094): 746-9, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-16760977

RESUMEN

Many organs are composed of tubular networks that arise by branching morphogenesis in which cells bud from an epithelium and organize into a tube. Fibroblast growth factors (FGFs) and other signalling molecules have been shown to guide branch budding and outgrowth, but it is not known how epithelial cells coordinate their movements and morphogenesis. Here we use genetic mosaic analysis in Drosophila melanogaster to show that there are two functionally distinct classes of cells in budding tracheal branches: cells at the tip that respond directly to Branchless FGF and lead branch outgrowth, and trailing cells that receive a secondary signal to follow the lead cells and form a tube. These roles are not pre-specified; rather, there is competition between cells such that those with the highest FGF receptor activity take the lead positions, whereas those with less FGF receptor activity assume subsidiary positions and form the branch stalk. Competition appears to involve Notch-mediated lateral inhibition that prevents extra cells from assuming the lead. There may also be cooperation between budding cells, because in a mosaic epithelium, cells that cannot respond to the chemoattractant, or respond only poorly, allow other cells in the epithelium to move ahead of them.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Células Epiteliales/citología , Morfogénesis , Tráquea/citología , Tráquea/embriología , Animales , Comunicación Celular , Recuento de Células , Movimiento Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Dosificación de Gen , Genes de Insecto/genética , Mutación/genética , Fenotipo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Notch/metabolismo
9.
Methods Mol Biol ; 2152: 179-189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524553

RESUMEN

Embryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.The conserved CCM3 protein functions together with its binding partner, Germinal Center Kinase III (Wheezy/GckIII in Drosophila, MST3, STK24, and STK25 in human) in the regulation of tube morphogenesis (Bergametti et al. Am J Hum Genet. 76:42-51, 2005; Fidalgo et al. J Cell Sci. 123:1274-1284, 2010; Guclu et al. Neurosurgery. 57:1008-1013, 2005; Lant et al. Nat Commun. 6:6449, 2015; Song et al. Dev Cell. 25:507-519, 2013; Ceccarelli et al. J Biol Chem. 286:25056-25064, 2011; Rehain-Bell et al. Curr Biol. 27:860-867, 2017; Xu et al. Structure. 21:1059-1066, 2013; Zhang et al. Front Biosci. 17:2295-2305, 2012; Zhang et al. Dev Cell. 27:215-226, 2013; Zheng et al. J Clin Invest. 120:2795-2804, 2010). The Drosophila proteins play a role in the regulation of tube shape in the tracheal (respiratory) system, analogous to the role of the human proteins in the vascular system. To understand the cellular basis for tube dilation defects caused by loss of pathway function, we describe techniques for the generation and analysis of positively marked homozygous mutant GckIII tracheal cells, coupled with an "open book" preparation that can be subjected to immunofluorescent analysis. Dozens of mutant tracheal cells are generated per mosaic animal, and neighboring heterozygous cells in the same animal serve as ideal internal controls.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Drosophila/genética , Organogénesis/genética , Tráquea/embriología , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Larva , Mitosis/genética , Morfogénesis/genética , Mosaicismo , Fenotipo , Recombinación Genética
11.
Dev Cell ; 47(5): 564-575.e5, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30458981

RESUMEN

Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.


Asunto(s)
Morfogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Tráquea/embriología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Quinasas del Centro Germinal , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinasas/genética , Tráquea/metabolismo
12.
Genetics ; 165(1): 197-204, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14504227

RESUMEN

In Drosophila, mutations in double-strand DNA break (DSB) repair enzymes, such as spn-B, activate a meiotic checkpoint leading to dorsal-ventral patterning defects in the egg and an abnormal appearance of the oocyte nucleus. Mutations in spn-D cause an array of ovarian phenotypes similar to spn-B. We have cloned the spn-D locus and found that it encodes a protein of 271 amino acids that shows significant homology to the human RAD51C protein. In mammals the spn-B and spn-D homologs, XRCC3 and RAD51C, play a role in genomic stability in somatic cells. To test for a similar role for spn-B and spn-D in double-strand DNA repair in mitotic cells, we analyzed the sensitivity of single and double mutants to DSBs induced by exposure to X rays and MMS. We found that neither singly mutant nor doubly mutant animals were significantly sensitized to MMS or X rays. These results suggest that spn-B and spn-D act in meiotic recombination but not in repair of DSBs in somatic cells. As there is no apparent ortholog of the meiosis-specific DMC1 gene in the Drosophila genome, and given their meiosis-specific requirement, we suggest that spn-B and spn-D may have a function comparable to DMC1.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Meiosis/genética , Animales , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas del Huevo/fisiología , Meiosis/fisiología , Datos de Secuencia Molecular , Filogenia
13.
Curr Biol ; 24(15): 1756-64, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25065756

RESUMEN

Most tubes have seams (intercellular or autocellular junctions that seal membranes together into a tube), but "seamless" tubes also exist. In Drosophila, stellate-shaped tracheal terminal cells make seamless tubes, with single branches running through each of dozens of cellular extensions. We find that mutations in braided impair terminal cell branching and cause formation of seamless tube cysts. We show that braided encodes Syntaxin7 and that cysts also form in cells deficient for other genes required either for membrane scission (shibire) or for early endosome formation (Rab5, Vps45, and Rabenosyn-5). These data define a requirement for early endocytosis in shaping seamless tube lumens. Importantly, apical proteins Crumbs and phospho-Moesin accumulate to aberrantly high levels in braided terminal cells. Overexpression of either Crumbs or phosphomimetic Moesin induced lumenal cysts and decreased terminal branching. Conversely, the braided seamless tube cyst phenotype was suppressed by mutations in crumbs or Moesin. Indeed, mutations in Moesin dominantly suppressed seamless tube cyst formation and restored terminal branching. We propose that early endocytosis maintains normal steady-state levels of Crumbs, which recruits apical phosphorylated (active) Moe, which in turn regulates seamless tube shape through modulation of cortical actin filaments.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Endocitosis , Proteínas de la Membrana/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Larva/fisiología , Proteínas de la Membrana/metabolismo , Mutación
14.
Nat Cell Biol ; 15(2): 137-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23377027

RESUMEN

Most organs are composed of tubes of differing cellular architectures, including intracellular 'seamless' tubes. Two studies examining the morphogenesis of the seamless tubes formed by the excretory canal cell in Caenorhabditis elegans reveal a previously unappreciated role for osmoregulation of tubulogenesis: hyperosmotic shock recruits canalicular vesicles to the lumenal membrane to promote seamless tube growth.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Homeodominio/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Equilibrio Hidroelectrolítico , Animales , Humanos
15.
Dev Cell ; 25(5): 507-19, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23763949

RESUMEN

Tubes of differing cellular architecture connect into networks. In the Drosophila tracheal system, two tube types connect within single cells (terminal cells); however, the genes that mediate this interconnection are unknown. Here we characterize two genes that are essential for this process: lotus, required for maintaining a connection between the tubes, and wheezy, required to prevent local tube dilation. We find that lotus encodes N-ethylmaleimide sensitive factor 2 (NSF2), whereas wheezy encodes Germinal center kinase III (GCKIII). GCKIIIs are effectors of Cerebral cavernous malformation 3 (CCM3), a protein mutated in vascular disease. Depletion of Ccm3 by RNA interference phenocopies wheezy; thus, CCM3 and GCKIII, which prevent capillary dilation in humans, prevent tube dilation in Drosophila trachea. Ectopic junctional and apical proteins are present in wheezy terminal cells, and we show that tube dilation is suppressed by reduction of NSF2, of the apical determinant Crumbs, or of septate junction protein Varicose.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de la Membrana/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Tráquea/embriología , Alelos , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/embriología , Prueba de Complementación Genética , Genotipo , Quinasas del Centro Germinal , Datos de Secuencia Molecular , Mutación , Fenotipo , Homología de Secuencia de Aminoácido
16.
Sci Signal ; 5(207): pe1, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22253260

RESUMEN

The hexosamine biosynthetic pathway, whose end product is UDP-N acetylglucosamine (UDP-GlcNAc), lies at the base of cellular glycosylation pathways, including glycosylation of lipids, formation of heparin sulfated proteoglycans, and N- and O-linked glycosylation of proteins. Forward genetic studies in Drosophila have revealed that mutations in genes encoding different enzymes of the hexosamine biosynthetic pathway result in reduction of UDP-GlcNAc to different extents, with a consequent disruption of distinct glycosylation pathways and developmental processes. A maternal and zygotic loss-of-function screen has identified mutations in nesthocker (nst), which encodes an enzyme in the hexosamine biosynthetic pathway. Embryos lacking maternal and zygotic nst gene products show defective O-GlcNAcylation of a fibroblast growth factor receptor (FGFR)-specific adaptor protein, which impairs FGFR-dependent migration of mesodermal and tracheal cells.


Asunto(s)
Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Animales , Drosophila , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilación , Hexosaminas/química , Humanos , Modelos Biológicos , Mutación , Fenotipo , Transducción de Señal
17.
Nat Cell Biol ; 14(4): 386-93, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22407366

RESUMEN

Seamless tubes form intracellularly without cell-cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres. We find that mutations in multiple components of the dynein motor complex block seamless tube growth, raising the possibility that the lumenal membrane forms through minus-end-directed transport of apical membrane components along microtubules. Growth of seamless tubes is polarized along the proximodistal axis by Rab35 and its apical membrane-localized GAP, Whacked. Strikingly, loss of whacked (or constitutive activation of Rab35) leads to tube overgrowth at terminal cell branch tips, whereas overexpression of Whacked (or dominant-negative Rab35) causes formation of ectopic tubes surrounding the terminal cell nucleus. Thus, vesicle trafficking has key roles in making and shaping seamless tubes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Tráquea/crecimiento & desarrollo , Tráquea/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Tráquea/citología
18.
Curr Opin Cell Biol ; 22(5): 633-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20739171

RESUMEN

The Drosophila respiratory organ (tracheal system) consists of epithelial tubes, the morphogenesis of which is controlled by distinct sets of signaling pathways and transcription factors. The downstream events controlling tube formation and shape are only now beginning to be identified. Here we review recent insight into the communication between neighboring tracheal cells, their interactions with the surrounding matrix, and the impact of these processes on tube morphogenesis. We focus on cell-cell interactions that drive rearrangement of cells within the epithelium and that are essential for maintenance of epithelial integrity, and also on cell-matrix interactions that play key roles in determining and maintaining the size and shape of tube lumens.


Asunto(s)
Drosophila/crecimiento & desarrollo , Morfogénesis , Tráquea/crecimiento & desarrollo , Animales , Proteínas de Drosophila/metabolismo , Humanos , Modelos Biológicos
19.
Development ; 133(12): 2383-93, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16720877

RESUMEN

Epithelial tubes that compose many organs are typically long lasting, except under specific developmental and physiological conditions when network remodeling occurs. Although there has been progress elucidating mechanisms of tube formation, little is known of the mechanisms that maintain tubes and destabilize them during network remodeling. Here, we describe Drosophila tendrils mutations that compromise maintenance of tracheal terminal branches, fine gauge tubes formed by tracheal terminal cells that ramify on and adhere tightly to tissues in order to supply them with oxygen. Homozygous tendrils terminal cell clones have fewer terminal branches than normal but individual branches contain multiple convoluted lumens. The phenotype arises late in development: terminal branches bud and form lumens normally early in development, but during larval life lumens become convoluted and mature branches degenerate. Their lumens, however, are retained in the remaining branches, resulting in the distinctive multi-lumen phenotype. Mapping and molecular studies demonstrate that tendrils is allelic to rhea, which encodes Drosophila talin, a large cytoskeletal protein that links integrins to the cytoskeleton. Terminal cells mutant for myospheroid, the major Drosophila beta-integrin, or doubly mutant for multiple edematous wings and inflated alpha-integrins, also show the tendrils phenotype, and localization of myospheroid beta-integrin protein is disrupted in tendrils mutant terminal cells. The results provide evidence that integrin-talin adhesion complexes are necessary to maintain tracheal terminal branches and luminal organization. Similar complexes may stabilize other tubular networks and may be targeted for inactivation during network remodeling events.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Integrinas/genética , Talina/genética , Alelos , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Integrinas/metabolismo , Larva/anatomía & histología , Larva/fisiología , Morfogénesis , Mutación , Fenotipo , Talina/metabolismo , Tráquea/crecimiento & desarrollo
20.
Annu Rev Cell Dev Biol ; 19: 623-47, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14570584

RESUMEN

Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Sistema Respiratorio/embriología , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Drosophila/citología , Drosophila/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Morfogénesis/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Sistema Respiratorio/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA