RESUMEN
BACKGROUND: Breast (BCa) and prostate (PCa) cancers are hormone receptor (HR)-driven cancers. Thus, BCa and PCa patients are given therapies that reduce hormone levels or directly block HR activity; but most patients eventually develop treatment resistance. We have previously reported that interleukin-1 (IL-1) inflammatory cytokine downregulates ERα and AR mRNA in HR-positive (HR+) BCa and PCa cell lines, yet the cells can remain viable. Additionally, we identified pro-survival proteins and processes upregulated by IL-1 in HR+ BCa and PCa cells, that are basally high in HR- BCa and PCa cells. Therefore, we hypothesize that IL-1 confers a conserved gene expression pattern in HR+ BCa and PCa cells that mimics conserved basal gene expression patterns in HR- BCa and PCa cells to promote HR-independent survival and tumorigenicity. METHODS: We performed RNA sequencing (RNA-seq) for HR+ BCa and PCa cell lines exposed to IL-1 and for untreated HR- BCa and PCa cell lines. We confirmed expression patterns of select genes by RT-qPCR and used siRNA and/or drug inhibition to silence select genes in the BCa and PCa cell lines. Finally, we performed Ingenuity Pathway Analysis (IPA) and used the gene ontology web-based tool, GOrilla, to identify signaling pathways encoded by our RNA-seq data set. RESULTS: We identified 350 genes in common between BCa and PCa cells that are induced or repressed by IL-1 in HR+ cells that are, respectively, basally high or low in HR- cells. Among these genes, we identified Sequestome-1 (SQSTM1/p62) and SRY (Sex-Determining Region Y)-Box 9 (SOX9) to be essential for survival of HR- BCa and PCa cell lines. Analysis of publicly available data indicates that p62 and SOX9 expression are elevated in HR-independent BCa and PCa sublines generated in vitro, suggesting that p62 and SOX9 have a role in acquired hormone receptor independence and treatment resistance. We also assessed HR- cell line viability in response to the p62-targeting drug, verteporfin, and found that verteporfin is cytotoxic for HR- cell lines. CONCLUSIONS: Our 350 gene set can be used to identify novel therapeutic targets and/or biomarkers conserved among acquired (e.g. due to inflammation) or intrinsic HR-independent BCa and PCa.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-1/farmacología , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Activación TranscripcionalRESUMEN
Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks. Cohort 2 patients (NCT05103631/NCT04377932) received GPC3-CAR T cells that co-expressed IL15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumor response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared to non-responders, tumor-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members as well as genes related to type I interferon signaling. Collectively, these results demonstrate that IL15 increases the expansion, intratumoral survival, and antitumor activity of GPC3-CAR T cells in patients.
RESUMEN
Vα24-invariant natural killer T cells (NKTs) have anti-tumor properties that can be enhanced by chimeric antigen receptors (CARs). Here we report updated interim results from the first-in-human phase 1 evaluation of autologous NKTs co-expressing a GD2-specific CAR with interleukin 15 (IL15) (GD2-CAR.15) in 12 children with neuroblastoma (NB). The primary objectives were safety and determination of maximum tolerated dose (MTD). The anti-tumor activity of GD2-CAR.15 NKTs was assessed as a secondary objective. Immune response evaluation was an additional objective. No dose-limiting toxicities occurred; one patient experienced grade 2 cytokine release syndrome that was resolved by tocilizumab. The MTD was not reached. The objective response rate was 25% (3/12), including two partial responses and one complete response. The frequency of CD62L+NKTs in products correlated with CAR-NKT expansion in patients and was higher in responders (n = 5; objective response or stable disease with reduction in tumor burden) than non-responders (n = 7). BTG1 (BTG anti-proliferation factor 1) expression was upregulated in peripheral GD2-CAR.15 NKTs and is a key driver of hyporesponsiveness in exhausted NKT and T cells. GD2-CAR.15 NKTs with BTG1 knockdown eliminated metastatic NB in a mouse model. We conclude that GD2-CAR.15 NKTs are safe and can mediate objective responses in patients with NB. Additionally, their anti-tumor activity may be enhanced by targeting BTG1. ClinicalTrials.gov registration: NCT03294954 .
Asunto(s)
Células T Asesinas Naturales , Neuroblastoma , Receptores Quiméricos de Antígenos , Niño , Animales , Ratones , Humanos , Citotoxicidad Inmunológica , Receptores Quiméricos de Antígenos/genética , Neuroblastoma/terapia , Inmunoterapia Adoptiva/métodosRESUMEN
Vα24-invariant natural killer T (NKT) cells have shown potent anti-tumor properties in murine tumor models and have been linked to favorable outcomes in patients with cancer. However, low numbers of these cells in humans have hindered their clinical applications. Here we report interim results from all three patients enrolled on dose level 1 in a phase 1 dose-escalation trial of autologous NKT cells engineered to co-express a GD2-specific chimeric antigen receptor (CAR) with interleukin-15 in children with relapsed or resistant neuroblastoma (NCT03294954). Primary and secondary objectives were to assess safety and anti-tumor responses, respectively, with immune response evaluation as an additional objective. We ex vivo expanded highly pure NKT cells (mean ± s.d., 94.7 ± 3.8%) and treated patients with 3 × 106 CAR-NKT cells per square meter of body surface area after lymphodepleting conditioning with cyclophosphamide/fludarabine (Cy/Flu). Cy/Flu conditioning was the probable cause for grade 3-4 hematologic adverse events, as they occurred before CAR-NKT cell infusion, and no dose-limiting toxicities were observed. CAR-NKT cells expanded in vivo, localized to tumors and, in one patient, induced an objective response with regression of bone metastatic lesions. These initial results suggest that CAR-NKT cells can be expanded to clinical scale and safely applied to treat patients with cancer.
Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Células T Asesinas Naturales/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Receptores Quiméricos de Antígenos/genética , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Niño , Ciclofosfamida/administración & dosificación , Resistencia a Antineoplásicos/inmunología , Humanos , Inmunidad/efectos de los fármacos , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Masculino , Células T Asesinas Naturales/inmunología , Neuroblastoma/genética , Neuroblastoma/inmunología , Neuroblastoma/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Vidarabina/administración & dosificación , Vidarabina/análogos & derivadosRESUMEN
BACKGROUND: Multiparametric flow cytometry (MFC) is a popular technique for minimal residual disease (MRD) analysis. However, its applicability is still limited to 90% of B-cell precursor acute lymphoblastic leukemia (BCPALL) due to two major issues, i.e. a proportion of cases do not express adequate leukemia associated immunophenotype (LAIPs) with currently used markers and drug-induced antigen modulation. Hence, the incorporation of additional reliable markers is required for the further improvement of MFC-based MRD evaluation. We studied the utility of new markers in improvising MFC-based MRD detection in BCPALL. METHODS: Expression-patterns of six new markers, i.e. CD24, CD44, CD72, CD73, CD86, and CD200 were studied in leukemic-blasts from ninety childhood BCPALL patients and in hematogones from 20 uninvolved staging bone marrow (BM) and ten postinduction non-BCPALL BM samples using eight-color MFC. The utility of these new markers in the day 35 postinduction MRD evaluation was determined. RESULTS: Frequencies of LAIPs of CD73, CD86, CD72, CD44, CD200, and CD24 in diagnostic samples were 76.7, 56.7, 55.6, 50, 28.9, and 20%, respectively. Differential expression of all new markers was highly significant (P < 0.01) between early (CD10+ CD19+ CD34+) hematogones, late (CD10+ CD19+ CD34-) hematogones and BCPALL blasts except between early hematogones and BCPALL blasts for CD200 (P = 0.1). In MRD-positive samples, CD73 showed the maximum (83%) frequency of LAIP and CD86 showed the highest (100%) stability of aberrant expression. Inclusion of CD73 and CD86 increased the applicability of MFC-MRD assay to 98.9% MRD samples. CONCLUSION: CD73 and CD86 are the most relevant markers to incorporate in the routine MRD evaluation of BCPALL. © 2016 International Clinical Cytometry Society.