Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cell ; 84(5): 967-980.e10, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38242130

RESUMEN

Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.


Asunto(s)
Histonas , Óxido Nítrico , Histonas/genética , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Óxido Nítrico/metabolismo , Complejo Mediador/metabolismo , Oxidorreductasas/metabolismo
2.
Nat Immunol ; 18(5): 530-540, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288101

RESUMEN

Stimulation of macrophages with interferon-γ (IFN-γ) and interleukin 4 (IL-4) triggers distinct and opposing activation programs. During mixed infections or cancer, macrophages are often exposed to both cytokines, but how these two programs influence each other remains unclear. We found that IFN-γ and IL-4 mutually inhibited the epigenomic and transcriptional changes induced by each cytokine alone. Computational and functional analyses revealed the genomic bases for gene-specific cross-repression. For instance, while binding motifs for the transcription factors STAT1 and IRF1 were associated with robust and IL-4-resistant responses to IFN-γ, their coexistence with binding sites for auxiliary transcription factors such as AP-1 generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation in complex environmental conditions.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Macrófagos/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Interferente Pequeño/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo
3.
Cell ; 152(1-2): 157-71, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332752

RESUMEN

According to current models, once the cell has reached terminal differentiation, the enhancer repertoire is completely established and maintained by cooperatively acting lineage-specific transcription factors (TFs). TFs activated by extracellular stimuli operate within this predetermined repertoire, landing close to where master regulators are constitutively bound. Here, we describe latent enhancers, defined as regions of the genome that in terminally differentiated cells are unbound by TFs and lack the histone marks characteristic of enhancers but acquire these features in response to stimulation. Macrophage stimulation caused sequential binding of stimulus-activated and lineage-determining TFs to these regions, enabling deposition of enhancer marks. Once unveiled, many of these enhancers did not return to a latent state when stimulation ceased; instead, they persisted and mediated a faster and stronger response upon restimulation. We suggest that stimulus-specific expansion of the cis-regulatory repertoire provides an epigenomic memory of the exposure to environmental agents.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Macrófagos/metabolismo , Animales , Diferenciación Celular , Epigenómica , Código de Histonas , Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
4.
Cell ; 153(1): 101-11, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23540693

RESUMEN

LINE-1 (L1) retrotransposons are mobile genetic elements comprising ~17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic ß-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2(-/-) mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Análisis Mutacional de ADN , Genes Supresores de Tumor , Neoplasias Hepáticas/genética , Elementos de Nucleótido Esparcido Largo , Mutagénesis Insercional , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adulto , Anciano , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
5.
Genes Dev ; 31(4): 399-412, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275002

RESUMEN

Enhancers and promoters that control the transcriptional output of terminally differentiated cells include cell type-specific and broadly active housekeeping elements. Whether the high constitutive activity of these two groups of cis-regulatory elements relies on entirely distinct or instead also on shared regulators is unknown. By dissecting the cis-regulatory repertoire of macrophages, we found that the ELF subfamily of ETS proteins selectively bound within 60 base pairs (bp) from the transcription start sites of highly active housekeeping genes. ELFs also bound constitutively active, but not poised, macrophage-specific enhancers and promoters. The role of ELFs in promoting high-level constitutive transcription was suggested by multiple evidence: ELF sites enabled robust transcriptional activation by endogenous and minimal synthetic promoters, ELF recruitment was stabilized by the transcriptional machinery, and ELF proteins mediated recruitment of transcriptional and chromatin regulators to core promoters. These data suggest that the co-optation of a limited number of highly active transcription factors represents a broadly adopted strategy to equip both cell type-specific and housekeeping cis-regulatory elements with the ability to efficiently promote transcription.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Esenciales/genética , Macrófagos/fisiología , Factores de Transcripción/metabolismo , Animales , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/genética
6.
EMBO Rep ; 22(9): e53251, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34328708

RESUMEN

Macrophages react to microbial and endogenous danger signals by activating a broad panel of effector and homeostatic responses. Such responses entail rapid and stimulus-specific changes in gene expression programs accompanied by extensive rewiring of metabolism, with alterations in chromatin modifications providing one layer of integration of transcriptional and metabolic regulation. A systematic and mechanistic understanding of the mutual influences between signal-induced metabolic changes and gene expression is still lacking. Here, we discuss current evidence, controversies, knowledge gaps, and future areas of investigation on how metabolic and transcriptional changes are dynamically integrated during macrophage activation. The cross-talk between metabolism and inflammatory gene expression is in part accounted for by alterations in the production, usage, and availability of metabolic intermediates that impact the macrophage epigenome. In addition, stimulus-inducible gene expression changes alter the production of inflammatory mediators, such as nitric oxide, that in turn modulate the activity of metabolic enzymes thus determining complex regulatory loops. Critical issues remain to be understood, notably whether and how metabolic rewiring can bring about gene-specific (as opposed to global) expression changes.


Asunto(s)
Inflamación , Activación de Macrófagos , Expresión Génica , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Activación de Macrófagos/genética , Macrófagos
7.
Mol Cell ; 60(3): 460-74, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593720

RESUMEN

Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs.


Asunto(s)
Núcleo Celular/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , Terminación de la Transcripción Genética/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/genética , ARN no Traducido/genética
8.
Genes Dev ; 29(4): 394-408, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25637355

RESUMEN

The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8-PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF-AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome. While constitutively expressed IRF8-dependent genes contained only sites mediating basal IRF8/PU.1 recruitment, inducible IRF8-dependent genes contained variable combinations of constitutive and inducible sites. Overall, these data show at the genome scale how the same TF can be linked to constitutive and inducible gene regulation via distinct combinations of alternative DNA-binding sites.


Asunto(s)
Regulación de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Macrófagos/metabolismo , Animales , Células Cultivadas , Factores Reguladores del Interferón/genética , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Unión Proteica
9.
Mol Cell ; 54(5): 844-857, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24813947

RESUMEN

Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features.


Asunto(s)
Elementos de Facilitación Genéticos , Nucleosomas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Secuencia de Consenso , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Genéticos , Nucleosomas/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Análisis de Secuencia de ADN , Máquina de Vectores de Soporte , Transactivadores/genética
10.
Genome Res ; 28(5): 639-653, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29643204

RESUMEN

The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Transformación Celular Neoplásica/genética , Femenino , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Mamíferos/genética , Ratones Noqueados , Persona de Mediana Edad , Mutagénesis Insercional , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
11.
PLoS Genet ; 14(5): e1007380, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734330

RESUMEN

Chronic inflammation promotes oncogenic transformation and tumor progression. Many inflammatory agents also generate a toxic microenvironment, implying that adaptive mechanisms must be deployed for cells to survive and undergo transformation in such unfavorable contexts. A paradigmatic case is represented by cancers occurring in pediatric patients with genetic defects of hepatocyte phosphatidylcholine transporters and in the corresponding mouse model (Mdr2-/- mice), in which impaired bile salt emulsification leads to chronic hepatocyte damage and inflammation, eventually resulting in oncogenic transformation. By combining genomics and metabolomics, we found that the transition from inflammation to cancer in Mdr2-/- mice was linked to the sustained transcriptional activation of metabolic detoxification systems and transporters by the Constitutive Androstane Receptor (CAR), a hepatocyte-specific nuclear receptor. Activation of CAR-dependent gene expression programs coincided with reduced content of toxic bile acids in cancer nodules relative to inflamed livers. Treatment of Mdr2-/- mice with a CAR inhibitor blocked cancer progression and caused a partial regression of existing tumors. These results indicate that the acquisition of resistance to endo- or xeno-biotic toxicity is critical for cancers that develop in toxic microenvironments.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Transformación Celular Neoplásica/genética , Inactivación Metabólica/genética , Hígado/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Androstanoles/farmacología , Animales , Transformación Celular Neoplásica/metabolismo , Receptor de Androstano Constitutivo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Hepatitis/genética , Hepatitis/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/genética , Activación Transcripcional/efectos de los fármacos , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
12.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507079

RESUMEN

Mitochondria are the energy-generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome-wide functional screen, we identify the poorly characterized protein Zinc finger CCCH-type containing 10 (Zc3h10) as regulator of mitochondrial physiology. We show that Zc3h10 is upregulated during physiological mitochondriogenesis as it occurs during the differentiation of myoblasts into myotubes. Zc3h10 overexpression boosts mitochondrial function and promotes myoblast differentiation, while the depletion of Zc3h10 results in impaired myoblast differentiation, mitochondrial dysfunction, reduced expression of electron transport chain (ETC) subunits, and blunted TCA cycle flux. Notably, we have identified a loss-of-function mutation of Zc3h10 in humans (Tyr105 to Cys105) that is associated with increased body mass index, fat mass, fasting glucose, and triglycerides. Isolated peripheral blood mononuclear cells from individuals homozygotic for Cys105 display reduced oxygen consumption rate, diminished expression of some ETC subunits, and decreased levels of some TCA cycle metabolites, which all together derive in mitochondrial dysfunction. Taken together, our study identifies Zc3h10 as a novel mitochondrial regulator.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Anciano , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , Ciclo del Ácido Cítrico , Biología Computacional/métodos , Metabolismo Energético , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones , Mitocondrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación , Mioblastos/citología , Mioblastos/metabolismo , Proteoma , Proteómica/métodos
13.
Immunity ; 32(3): 317-28, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20206554

RESUMEN

Enhancers determine tissue-specific gene expression programs. Enhancers are marked by high histone H3 lysine 4 mono-methylation (H3K4me1) and by the acetyl-transferase p300, which has allowed genome-wide enhancer identification. However, the regulatory principles by which subsets of enhancers become active in specific developmental and/or environmental contexts are unknown. We exploited inducible p300 binding to chromatin to identify, and then mechanistically dissect, enhancers controlling endotoxin-stimulated gene expression in macrophages. In these enhancers, binding sites for the lineage-restricted and constitutive Ets protein PU.1 coexisted with those for ubiquitous stress-inducible transcription factors such as NF-kappaB, IRF, and AP-1. PU.1 was required for maintaining H3K4me1 at macrophage-specific enhancers. Reciprocally, ectopic expression of PU.1 reactivated these enhancers in fibroblasts. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors determines the activity of a distinct group of enhancers. We suggest that this may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/inmunología , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Sitios de Unión , Células Cultivadas , Cromatina/inmunología , Cromatina/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Femenino , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
14.
Genes Dev ; 25(2): 101-6, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21245163

RESUMEN

Inflammation involves the activation of a highly coordinated gene expression program that is specific for the initial stimulus and occurs in a different manner in bystander parenchymal cells and professional immune system cells recruited to the inflamed site. Recent data demonstrate that developmental transcription factors like the macrophage fate-determining Pu.1 set the stage for the activity of ubiquitous transcription factors activated by inflammatory stimuli, like NF-kB, AP-1, and interferon regulatory factors (IRFs). The intersection of lineage-determining and stimulus-activated transcription factors at enhancers explains cell type specificity in inflammatory responses.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Inflamación/genética , Factores de Transcripción/metabolismo , Animales , Humanos , Macrófagos/metabolismo
15.
Genome Res ; 25(12): 1812-24, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26510915

RESUMEN

An increasing number of noncoding RNAs (ncRNAs) have been implicated in various human diseases including cancer; however, the ncRNA transcriptome of hepatocellular carcinoma (HCC) is largely unexplored. We used CAGE to map transcription start sites across various types of human and mouse HCCs with emphasis on ncRNAs distant from protein-coding genes. Here, we report that retroviral LTR promoters, expressed in healthy tissues such as testis and placenta but not liver, are widely activated in liver tumors. Despite HCC heterogeneity, a subset of LTR-derived ncRNAs were more than 10-fold up-regulated in the vast majority of samples. HCCs with a high LTR activity mostly had a viral etiology, were less differentiated, and showed higher risk of recurrence. ChIP-seq data show that MYC and MAX are associated with ncRNA deregulation. Globally, CAGE enabled us to build a mammalian promoter map for HCC, which uncovers a new layer of complexity in HCC genomics.


Asunto(s)
Carcinoma Hepatocelular/etiología , Perfilación de la Expresión Génica , Neoplasias Hepáticas/etiología , Regiones Promotoras Genéticas , ARN no Traducido/genética , Secuencias Repetidas Terminales , Sitio de Iniciación de la Transcripción , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Viral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Unión Proteica , Factores de Transcripción/metabolismo , Transcriptoma , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
16.
Hepatology ; 65(5): 1708-1719, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27859418

RESUMEN

The ST18 gene has been proposed to act either as a tumor suppressor or as an oncogene in different human cancers, but direct evidence for its role in tumorigenesis has been lacking thus far. Here, we demonstrate that ST18 is critical for tumor progression and maintenance in a mouse model of liver cancer, based on oncogenic transformation and adoptive transfer of primary precursor cells (hepatoblasts). ST18 messenger RNA (mRNA) and protein were detectable neither in normal liver nor in cultured hepatoblasts, but were readily expressed after subcutaneous engraftment and tumor growth. ST18 expression in liver cells was induced by inflammatory cues, including acute or chronic inflammation in vivo, as well as coculture with macrophages in vitro. Knocking down the ST18 mRNA in transplanted hepatoblasts delayed tumor progression. Induction of ST18 knockdown in pre-established tumors caused rapid tumor involution associated with pervasive morphological changes, proliferative arrest, and apoptosis in tumor cells, as well as depletion of tumor-associated macrophages, vascular ectasia, and hemorrhage. Reciprocally, systemic depletion of macrophages in recipient animals had very similar phenotypic consequences, impairing either tumor development or maintenance, and suppressing ST18 expression in hepatoblasts. Finally, RNA sequencing of ST18-depleted tumors before involution revealed down-regulation of inflammatory response genes, pointing to the suppression of nuclear factor kappa B-dependent transcription. CONCLUSION: ST18 expression in epithelial cells is induced by tumor-associated macrophages, contributing to the reciprocal feed-forward loop between both cell types in liver tumorigenesis. Our findings warrant the exploration of means to interfere with ST18-dependent epithelium-macrophage interactions in a therapeutic setting. (Hepatology 2017;65:1708-1719).


Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas Experimentales/etiología , Factores de Transcripción/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Ratones Endogámicos C57BL
17.
Nature ; 470(7334): 414-8, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21331046

RESUMEN

Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which nuclear receptor co-repressor (NCoR) complexes are actively removed from the promoters of target genes to relieve basal repression. Ligand-dependent SUMOylation of liver X receptors (LXRs) has been found to suppress TLR4-induced transcription potently by preventing the NCoR clearance step, but the underlying mechanisms remain enigmatic. Here we provide evidence that coronin 2A (CORO2A), a component of the NCoR complex of previously unknown function, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/SUMO3-interaction motif in CORO2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)-dependent phosphorylation of LXRs, leading to their deSUMOylation by the SUMO protease SENP3 and release from CORO2A. These findings uncover a CORO2A-actin-dependent mechanism for the de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and by nuclear receptor signalling pathways that control immunity and homeostasis.


Asunto(s)
Actinas/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Proteínas de Microfilamentos/metabolismo , Actinas/química , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Cisteína Endopeptidasas , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HeLa , Homeostasis/genética , Humanos , Lipopolisacáridos/farmacología , Receptores X del Hígado , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Receptores Nucleares Huérfanos/metabolismo , Péptido Hidrolasas/metabolismo , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Transducción de Señal , Sumoilación , Tioglicolatos/farmacología , Receptores Toll-Like/metabolismo
18.
Mol Cell ; 35(1): 48-57, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595715

RESUMEN

Activation of toll-like receptors (TLRs) leads to derepression and subsequent activation of inflammatory response genes that play essential roles in innate and acquired immunity. Derepression requires signal-dependent turnover of the nuclear receptor corepressor NCoR from target promoters, but the mechanisms remain poorly understood. Here, we report that TLR4 uses NFkappaB to deliver IKKepsilon to target promoters that contain "integrated circuits" of kappaB and AP-1 sites, resulting in local phosphorylation of c-Jun and subsequent NCoR clearance. In contrast, TLR2 signaling leads to rapid activation of CaMKII and phosphorylation of the TBLR1 component of NCoR complexes, bypassing the requirement for c-Jun phosphorylation and enabling NCoR clearance from promoters lacking integrated kappaB elements. Intriguingly, the IKKvarepsilon-dependent clearance pathway is sensitive to transrepression by liver X receptors, while the CaMKII-dependent pathway is not. These findings reveal mechanisms for integration of TLR, calcium, and nuclear receptor signaling pathways that underlie pathogen-specific responses and disease-specific programs of inflammation.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Immunoblotting , Lipopéptidos/farmacología , Lipopolisacáridos/farmacología , Receptores X del Hígado , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares/genética , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Receptores Nucleares Huérfanos , Fosforilación/efectos de los fármacos , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Acetato de Tetradecanoilforbol/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/efectos de los fármacos
19.
Genes Dev ; 23(6): 681-93, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19299558

RESUMEN

Innate immune responses to bacterial or viral infection require rapid transition of large cohorts of inflammatory response genes from poised/repressed to actively transcribed states, but the underlying repression/derepression mechanisms remain poorly understood. Here, we report that, while the nuclear receptor corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressors establish repression checkpoints on broad sets of inflammatory response genes in macrophages and are required for nearly all of the transrepression activities of liver X receptors (LXRs), they can be selectively recruited via c-Jun or the Ets repressor Tel, respectively, establishing NCoR-specific, SMRT-specific, and NCoR/SMRT-dependent promoters. Unexpectedly, the binding of NCoR and SMRT to NCoR/SMRT-dependent promoters is frequently mutually dependent, establishing a requirement for both proteins for LXR transrepression and enabling inflammatory signaling pathways that selectively target NCoR or SMRT to also derepress/activate NCoR/SMRT-dependent genes. These findings reveal a combinatorial, corepressor-based strategy for integration of inflammatory and anti-inflammatory signals that play essential roles in immunity and homeostasis.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Macrófagos/inmunología , Proteínas Nucleares/inmunología , Proteínas Represoras/inmunología , Animales , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Inflamación/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/citología , Hígado/inmunología , Receptores X del Hígado , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Receptores Nucleares Huérfanos , Unión Proteica , Receptores Citoplasmáticos y Nucleares/inmunología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal
20.
PLoS Genet ; 7(12): e1002401, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174696

RESUMEN

Precise control of the innate immune response is required for resistance to microbial infections and maintenance of normal tissue homeostasis. Because this response involves coordinate regulation of hundreds of genes, it provides a powerful biological system to elucidate the molecular strategies that underlie signal- and time-dependent transitions of gene expression. Comprehensive genome-wide analysis of the epigenetic and transcription status of the TLR4-induced transcriptional program in macrophages suggests that Toll-like receptor 4 (TLR4)-dependent activation of nearly all immediate/early- (I/E) and late-response genes results from a sequential process in which signal-independent factors initially establish basal levels of gene expression that are then amplified by signal-dependent transcription factors. Promoters of I/E genes are distinguished from those of late genes by encoding a distinct set of signal-dependent transcription factor elements, including TATA boxes, which lead to preferential binding of TBP and basal enrichment for RNA polymerase II immediately downstream of transcriptional start sites. Global nuclear run-on (GRO) sequencing and total RNA sequencing further indicates that TLR4 signaling markedly increases the overall rates of both transcriptional initiation and the efficiency of transcriptional elongation of nearly all I/E genes, while RNA splicing is largely unaffected. Collectively, these findings reveal broadly utilized mechanisms underlying temporally distinct patterns of TLR4-dependent gene activation required for homeostasis and effective immune responses.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Inmunidad Innata/genética , Inflamación/genética , Macrófagos/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Epigénesis Genética/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Hematopoyéticas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Homeostasis , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Ratones , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , TATA Box/genética , Factores de Transcripción , Activación Transcripcional/genética , Activación Transcripcional/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA