Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Rev Lett ; 129(19): 198002, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36399724

RESUMEN

Thermal ratchets can extract useful work from random fluctuations. This is common in the molecular scale, such as motor proteins, and has also been used to achieve directional transport in microfluidic devices. In this Letter, we use the ratchet principle to induce net motility in an externally powered magnetic colloid, which otherwise shows reciprocal (back and forth) motion. The experimental system is based on ferromagnetic micro helices driven by oscillating magnetic fields, where the reciprocal symmetry is broken through asymmetric actuation timescales. The swimmers show net motility with an enhanced diffusivity, in agreement with the numerical calculations. This new class of microscale, magnetically powered, active colloids can provide a promising experimental platform to simulate diverse active matter phenomena in the natural world.


Asunto(s)
Coloides , Magnetismo , Movimiento (Física) , Fenómenos Magnéticos
2.
Langmuir ; 37(1): 289-296, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351633

RESUMEN

The field of micromotors has been growing exponentially with increased emphasis on biomedical applications, with various in vivo demonstrations of targeted drug delivery, biosensing, and gene delivery, among others. In parallel, these micromotors have been recently used for probing the rheological properties of both intra- and extracellular environments. Here, we demonstrate the application of magnetic micromotors for investigation of rheological properties of human blood. While there are several techniques to sense mechanical properties of blood, such as deformability of the red blood cells, this is the first experimental observation of using micromotors for these biophysical investigations. We hope that this will lead to a better understanding of the nature of interactions of micromotors with biological systems and expand the scope of micromotors for probing other related systems, such as interstitial fluids and other complex biological fluids.


Asunto(s)
Eritrocitos , Fenómenos Magnéticos , Humanos
3.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33857929

RESUMEN

We report a large chiro-optical response from a nanostructured film of aperiodic dielectric helices decorated with ellipsoidal metal nanoparticles. The influence of the inherent fabrication variation on the chiro-optical response of the wafer-scalable nanostructured film is investigated using a computational model which closely mimics the material system. From the computational approach, we found that the chiro-optical signal is strongly dependent on the ellipticities of the metal nanoparticles and the developed computational model can account for all the variations caused by the fabrication process. We report the experimentally realized dissymmetry factor ∼1.6, which is the largest reported for wafer scalable chiro-plasmonic samples till now. The calculations incorporate strong multipolar contributions of the plasmonic interactions to the chiro-optical response from the tightly confined ellipsoidal nanoparticles, improving upon the previous studies carried in the coupled dipole approximation regime. Our analyzes confirm the large chiro-optical response in these films developed by a scalable and simple fabrication technique, indicating their applicability pertaining to manipulation of optical polarization, enantiomer selective identification and enhanced sensing and detection of chiral molecules.

4.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33873164

RESUMEN

Light-matter interaction in graphene can be engineered and substantially enhanced through plasmonic sensitization, which has led to numerous applications in photodetection, sensing, photocatalysis and spectroscopy. The majority of these designs have relied on conventional plasmonic materials such as gold, silver and aluminum. This limits the implementation of such devices to the ultraviolet and visible regimes of the electromagnetic spectrum. However, for many practical applications, including those relevant to security and defense, the development of new strategies and materials for sensing and detection of infra red (IR) light is crucial. Here we use surface enhanced Raman spectroscopy (SERS), for direct visualization and estimation of enhanced light-matter interaction in graphene in the mid-IR regime, through sensitization by an unconventional plasmonic material. Specifically, we fabricate a hybrid device consisting of a single layer graphene and a two-dimensional array of nanodiscs of aluminum doped zinc oxide (AZO), which is a highly doped semiconductor, exhibiting plasmonic resonance in the mid-IR. We find that the enhancement in the SERS signal of graphene is of similar magnitude to what has been achieved previously in the visible using conventional plasmonic materials. Our results establish the potential of such hybrid systems for graphene-based optical and optoelectronic applications in the mid-IR.

5.
Langmuir ; 36(21): 5691-5708, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32383606

RESUMEN

Optical traps based on strongly confined electromagnetic fields at metal-dielectric interfaces are far more efficient than conventional optical tweezers. Specifically, these near-field nanotweezers allow the trapping of smaller particles at lower optical intensities, which can impact diverse research fields ranging from soft condensed matter physics to materials science and biology. A major thrust in the past decade has been focused on extending the capabilities of plasmonically enhanced nanotweezers beyond diffusion-limited trapping on surfaces such as to achieve dynamic control in the bulk of fluidic environments. Here, we review the recent efforts in optical nanotweezers, especially those involving hybrid forcing schemes, covering both surface and bulk-based techniques. We summarize the important capabilities demonstrated with this promising approach, with niche applications in reconfigurable nanopatterning and on-chip assembly as well as in sorting and separating colloidal nanoparticles.

6.
Soft Matter ; 16(24): 5770-5776, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32530441

RESUMEN

We study the two-dimensional assemblies of interacting colloidal particles in a loosely focussed optical trap. As the optical confinement is increased, the system becomes ordered and we investigate how these crystallites maintain their order under externally imposed oscillation. For small amplitudes, the crystalline order remains intact and the system behaves like a rigid body as predicted by numerical simulations. However, the rigidity breaks at large amplitudes, which we infer to be caused by the anharmonic component of the confinement potential. These studies are general enough to be applied to other physical systems comprising ordered finite-sized assemblies under external dynamic perturbation.

7.
J Chem Phys ; 152(4): 044709, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32007076

RESUMEN

There have been several reports of plasmonically enhanced graphene photodetectors in the visible and the near infrared regime but rarely in the ultraviolet. In a previous work, we have reported that a graphene-silver hybrid structure shows a high photoresponsivity of 13 A/W at 270 nm. Here, we consider the likely mechanisms that underlie this strong photoresponse. We investigate the role of the plasmonic layer and examine the response using silver and gold nanoparticles of similar dimensions and spatial arrangement. The effect on local doping, strain, and absorption properties of the hybrid is also probed by photocurrent measurements and Raman and UV-visible spectroscopy. We find that the local doping from the silver nanoparticles is stronger than that from gold and correlates with a measured photosensitivity that is larger in devices with a higher contact area between the plasmonic nanomaterials and the graphene layer.

8.
Angew Chem Int Ed Engl ; 59(52): 23690-23696, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32918839

RESUMEN

The invasion of cancer is brought about by continuous interaction of malignant cells with their surrounding tissue microenvironment. Investigating the remodeling of local extracellular matrix (ECM) by invading cells can thus provide fundamental insights into the dynamics of cancer progression. In this paper, we use an active untethered nanomechanical tool, realized as magnetically driven nanomotors, to locally probe a 3D tissue culture environment. We observed that nanomotors preferentially adhere to the cancer-proximal ECM and magnitude of the adhesive force increased with cell lines of higher metastatic ability. We experimentally confirmed that sialic acid linkage specific to cancer-secreted ECM makes it differently charged, which causes this adhesion. In an assay consisting of both cancerous and non-cancerous epithelia, that mimics the in vivo histopathological milieu of a malignant breast tumor, we find that nanomotors preferentially decorate the region around the cancer cells.


Asunto(s)
Nanotecnología/métodos , Microambiente Tumoral/genética , Humanos , Fenómenos Mecánicos
9.
Acc Chem Res ; 51(11): 2689-2698, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30346122

RESUMEN

Micro- and nanomotors are nonliving micro- and nanoparticles that are rendered motile by supplying energy from external sources, for example, through asymmetric chemical reactions or the application of electric, magnetic, optical, or acoustic fields. Their study is interesting for two reasons. First, nanomotors can impact future biomedical practices, where one envisions intelligent multifunctional nanomachines swarming toward a diseased site and delivering therapeutics with high accuracy. The second motivation stems from the prevalence of self-powered systems in nature, ranging from intracellular transport to human migration, which are nonequilibrium phenomena yet to be completely understood. Nanomotors provide a promising route toward the study of complex active matter phenomena with a well-defined and possibly reduced set of variables. Among different ways of powering nanomotors, magnetic field deserves a special mention because of its inherent biocompatibility, minimal dependence on properties of the surrounding medium, and remote powering mechanism. In particular, magnetically actuated propellers (MAPs), which are helical structures driven by rotating fields in fluids and gels, have been demonstrated to be highly suitable for various microfluidic and biotechnology applications. Unfortunately, this method of actuation requires direct application of mechanical torque by the applied field, implying that the system is driven and therefore cannot be considered self-propelled. To overcome this fundamental limitation, we discuss an alternate magnetic drive where the MAPs are powered by oscillating (not rotating) magnetic fields. This technique induces motility in the form of back-and-forth motion but allows the directionality to be unspecified, and therefore, it represents a zero-force, zero-torque active matter where the nanomotors behave effectively as self-propelled entities. The MAPs show enhanced diffusivity compared with their passive counterparts, and their motility can be tuned by altering the external magnetic drive, which establishes the suitability of the MAPs as model active particles. Enhancement of the diffusivity depends on the thermal noise as well as the inherent asymmetries of the individual motors, which could be well-understood through numerical simulations. In the presence of small direct-current fields and interactions with the surface, the swimmers can be maneuvered and subsequently positioned in an independent manner. Next, we discuss experimental results pertaining to the collective dynamics of these helical magnetic nanoswimmers. We have studied nonmagnetic tracer beads suspended in a medium containing many swimmers and found the diffusivity of the beads to increase under magnetic actuation, akin to measurements performed in dense bacterial suspensions. In summary, we envision that rendering the system of MAPs active will not only provide a new model system to investigate fundamental nonequilibrium phenomena but also play a vital role in the development of intelligent theranostic probes for futuristic biomedical applications.

10.
Nanotechnology ; 29(25): 255203, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29613855

RESUMEN

Chiral metamaterials are obtained by assembling plasmonic elements in geometries with broken mirror symmetry, which can have promising applications pertaining to generation, manipulation and detection of optical polarisation. The materials used to fabricate this promising nanosystem, especially in the visible-NIR regime, are limited to noble metals such as Au and Ag. However, they are not stable at elevated temperatures and in addition, incompatible with CMOS technologies. We demonstrate that it is possible to develop a chiro-plasmonic system based on a refractory material such as titanium nitride (TiN) which does not have these disadvantages. The building block of our metamaterial is a novel core-shell helix, obtained by coating TiN over silica nanohelices. These were arranged in a regular two-dimensional array over cm-scale areas, made possible by the use of scalable fabrication techniques such as laser interference lithography, glancing angle deposition and DC magnetron sputtering. The measured chiro-optical response was extremely broadband (<500 nm to >1400 nm), and had contributions from individual, as well as collective plasmon modes of the interacting nanohelices, whose spectral characteristics could be easily controlled by varying the direction of the incident radiation.

11.
Phys Rev Lett ; 117(25): 258002, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28036193

RESUMEN

Controlling an assembly of colloidal particles under external forces can be helpful in developing soft nanomaterials with novel functionalities. How external impurities organize within such confined systems is of fundamental and technological interest, especially when the system sizes are so small that even a single dopant can interact with an appreciable fraction of the system. To address this question, we use a defocused laser beam to form two-dimensional colloidal crystallites containing foreign dopants. Our studies reveal a surprising position dependence in the fate of dopants getting either spontaneously expelled or permanently internalized within the crystallite. This phenomenon arises due to the subtle interplay between the effects of external confinement and the role of entropy in the thermodynamics of small assemblies of interacting particles.

12.
Nano Lett ; 14(4): 1968-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24641110

RESUMEN

Controlled motion of artificial nanomotors in biological environments, such as blood, can lead to fascinating biomedical applications, ranging from targeted drug delivery to microsurgery and many more. In spite of the various strategies used in fabricating and actuating nanomotors, practical issues related to fuel requirement, corrosion, and liquid viscosity have limited the motion of nanomotors to model systems such as water, serum, or biofluids diluted with toxic chemical fuels, such as hydrogen peroxide. As we demonstrate here, integrating conformal ferrite coatings with magnetic nanohelices offer a promising combination of functionalities for having controlled motion in practical biological fluids, such as chemical stability, cytocompatibility, and the generated thrust. These coatings were found to be stable in various biofluids, including human blood, even after overnight incubation, and did not have significant influence on the propulsion efficiency of the magnetically driven nanohelices, thereby facilitating the first successful "voyage" of artificial nanomotors in human blood. The motion of the "nanovoyager" was found to show interesting stick-slip dynamics, an effect originating in the colloidal jamming of blood cells in the plasma. The system of magnetic "nanovoyagers" was found to be cytocompatible with C2C12 mouse myoblast cells, as confirmed using MTT assay and fluorescence microscopy observations of cell morphology. Taken together, the results presented in this work establish the suitability of the "nanovoyager" with conformal ferrite coatings toward biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Compuestos Férricos/química , Nanopartículas de Magnetita/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/metabolismo , Compuestos Férricos/metabolismo , Humanos , Ensayo de Materiales , Ratones , Movimiento (Física)
13.
Phys Rev Lett ; 111(24): 248101, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483702

RESUMEN

We report on the development of a system of micron-sized reciprocal swimmers that can be powered with small homogeneous magnetic fields, and whose motion resembles that of a helical flagellum moving back and forth. We have measured the diffusivities of the swimmers to be higher compared to nonactuated objects of identical dimensions at long time scales, in accordance with the theoretical predictions made by Lauga [Phys. Rev. Lett. 106, 178101 (2011)]. Randomness in the reciprocity of the actuation strokes was found to have a strong influence on the enhancement of the diffusivity, which has been investigated with numerical calculations.


Asunto(s)
Materiales Biomiméticos/química , Magnetismo , Nanoestructuras/química , Difusión , Natación
14.
Phys Chem Chem Phys ; 15(26): 10817-23, 2013 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-23694848

RESUMEN

We consider the rotational motion of an elongated nanoscale object in a fluid under an external torque. The experimentally observed dynamics could be understood from analytical solutions of the Stokes equation, with explicit formulae derived for the dynamical states as a function of the object dimensions and the parameters defining the external torque. Under certain conditions, multiple analytical solutions to the Stokes equations exist, which have been investigated through numerical analysis of their stability against small perturbations and their sensitivity towards initial conditions. These experimental results and analytical formulae are general enough to be applicable to the rotational motion of any isolated elongated object at low Reynolds numbers, and could be useful in the design of non-spherical nanostructures for diverse applications pertaining to microfluidics and nanoscale propulsion technologies.


Asunto(s)
Modelos Teóricos , Microfluídica , Nanotecnología , Rotación , Torque
15.
Eur Phys J Spec Top ; 232(6): 927-933, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37309448

RESUMEN

A scallop-like swimmer going back-and-forth (reciprocal motion) does not produce any net motility. We discuss a similar artificial microswimmer that is powered by magnetic fields. In the presence of thermal noise, the helical swimmer exhibits enhanced diffusivity during reciprocal actuation. The external magnetic drive can be further modified to break the reciprocity. Equipped with only the information on swimmer trajectories and orientations, we discuss quantitative methods to estimate the degree of reciprocity and non-reciprocity in such scenarios. The paper proposes a quantitative measure and validates the same with numerical simulations, further supported by experiments.

16.
Opt Lett ; 37(7): 1232-4, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22466205

RESUMEN

In this letter, we investigate the circular differential deflection of a light beam refracted at the interface of an optically active medium. We show that the difference between the angles of deviation of the two circularly polarized components of the transmitted beam is enhanced manyfold near total internal reflection, which suggests a simple way of increasing the limit of detection of chiro-optical measurements.

17.
Appl Opt ; 51(27): 6480-3, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23033016

RESUMEN

The angles at which a light beam gets diffracted by a grating depend strongly on the direction of incidence for diffraction angles close to a right angle. Accordingly, it is possible to amplify small beam deflections by placing a grating at an optimal orientation to the light path. We use this principle to amplify small beam deviations arising out of a light beam refracting at the interface of an optically active medium, and demonstrate a new technique of enhancing the limit of detection of chiro-optical measurements.


Asunto(s)
Refractometría/instrumentación , Refractometría/métodos , Algoritmos , Campos Electromagnéticos , Diseño de Equipo , Luz , Rotación Óptica , Propiedades de Superficie
18.
Adv Healthc Mater ; 11(14): e2200232, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35481942

RESUMEN

Millions of root canal treatments fail worldwide due to remnant bacteria deep in the dentinal tubules located within the dentine tissue of human teeth. The complex and narrow geometry of the tubules renders current techniques relying on passive diffusion of antibacterial agents ineffective. Here, the potential of actively maneuvered nanobots is investigated to disinfect dentinal tubules, which can be incorporated during a standard root canal procedure. It is demonstrated that magnetically driven nanobots can reach the depths of the tubules not possible with current clinical practices. Subtle alterations of the magnetic drive allow both deep implantations of the nanobots isotopically distributed throughout the dentine and spatially controlled recovery from selected regions, further supported by numerical simulations. Finally, the integration of bactericidal therapeutic modality with the nanobots is demonstrated, thereby validating the tremendous potential of nanobots in dentistry and nanomedicine in general.


Asunto(s)
Enterococcus faecalis , Irrigantes del Conducto Radicular , Antibacterianos/farmacología , Cavidad Pulpar , Dentina , Humanos , Insuficiencia del Tratamiento
19.
Phys Rev Res ; 4(3): 033069, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37275181

RESUMEN

Magnetic nano- and microswimmers provide a powerful platform to study driven colloidal systems in fluidic media and are relevant to futuristic medical technologies requiring precise yet minimally invasive motion control at small scales. Upon the action of a rotating magnetic field, the helical microswimmers rotate and translate, generating flow in the surrounding fluid. In this paper, we study the fluid flow induced by the rotating helices using a combination of experiments, numerical simulations, and theory. The microhelices are actuated either in a fluid bulk or in proximity to the bottom wall using typical microfluidic device setup. We conclude that the mean hydrodynamic flow due to the helix actuation can be closely approximated by a system of rotlets line distributed along the helical axis (i.e., representing the flow due to rotating cylinder) which gets modified close to a wall through appropriate contributions from image multipoles. As the mean flow can be obtained in closed form, this study can be further applied towards modeling of the dynamics in a swarm of driven microswimmers interacting hydrodynamically near a bounding surface.

20.
Biomater Adv ; 140: 213048, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35939957

RESUMEN

Helical magnetic nanomotors can be actuated using an external magnetic field and have potential applications in drug delivery, colloidal manipulation, and bio-microrheology. Recently, they have been maneuvered in biological environments such as vitreous humour, dentinal tubules, peritoneal fluid, stromal matrix, and blood, which are promising developments for clinical applications. However, their biocompatibility and biodistribution are vital parameters that must be assessed before further use. An extensive quantitative evaluation has been performed for these parameters for the first time through in vitro and in vivo experiments. Investigations of cell death, proliferation, and DNA damage ascertain that the motors are non-toxic. Also, an unbiased transcriptomic analysis affirms that the motors are not genotoxic till 20 motors/ cell. Toxicity studies in mice reveal that the motors show no signs of toxicity up to a dose of 55 mg/ kg body weight. Further, the biodistribution studies show that they remain in the blood circulation after injection and at later stages possibly adhere to the walls of the blood vessel because of adsorption. However, perfusion with physiological saline decreases this adsorption/adhesion. Overall, we demonstrate the biocompatibility of nanomotors in live cellular and organismal systems, and a systemic biodistribution analysis reveals organ-specific retention of motors.


Asunto(s)
Campos Magnéticos , Magnetismo , Animales , Ratones , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA