Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(19): 1658-1671, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37624904

RESUMEN

Iron is an essential nutrient required by all cells but used primarily for red blood cell production. Because humans have no effective mechanism for ridding the body of excess iron, the absorption of dietary iron must be precisely regulated. The critical site of regulation is the transfer of iron from the absorptive enterocyte to the portal circulation via the sole iron efflux transporter, ferroportin. Here, we report that poly(rC)-binding protein 1 (PCBP1), the major cytosolic iron chaperone, is necessary for the regulation of iron flux through ferroportin in the intestine of mice. Mice lacking PCBP1 in the intestinal epithelium exhibit low levels of enterocyte iron, poor retention of dietary iron in enterocyte ferritin, and excess efflux of iron through ferroportin. Excess iron efflux occurred despite lower levels of ferroportin protein in enterocytes and upregulation of the iron regulatory hormone hepcidin. PCBP1 deletion and the resulting unregulated dietary iron absorption led to poor growth, severe anemia on a low-iron diet, and liver oxidative stress with iron loading on a high-iron diet. Ex vivo culture of PCBP1-depleted enteroids demonstrated no defects in hepcidin-mediated ferroportin turnover. However, measurement of kinetically labile iron pools in enteroids competent or blocked for iron efflux indicated that PCBP1 functioned to bind and retain cytosolic iron and limit its availability for ferroportin-mediated efflux. Thus, PCBP1 coordinates enterocyte iron and reduces the concentration of unchaperoned "free" iron to a low level that is necessary for hepcidin-mediated regulation of ferroportin activity.


Asunto(s)
Proteínas de Transporte de Catión , Sobrecarga de Hierro , Humanos , Ratones , Animales , Hierro/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro de la Dieta/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Intestinos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
3.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914695

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas de Unión al GTP rab/metabolismo , Anciano , Animales , Transporte Biológico , Cuerpo Estriado , Mutación con Ganancia de Función/genética , Células HEK293 , Humanos , Hierro/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas de Unión al GTP rab/genética
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593646

RESUMEN

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Termogénesis/fisiología , Adipocitos/metabolismo , Adipocitos Beige/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Beige/metabolismo , Animales , Regulación hacia Abajo/fisiología , Eritropoyetina/metabolismo , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Transducción de Señal/fisiología
5.
Blood ; 137(18): 2509-2519, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33512384

RESUMEN

Polycythemia and pulmonary hypertension are 2 human diseases for which better therapies are needed. Upregulation of hypoxia-inducible factor-2α (HIF-2α) and its target genes, erythropoietin (EPO) and endothelin-1, causes polycythemia and pulmonary hypertension in patients with Chuvash polycythemia who are homozygous for the R200W mutation in the von Hippel Lindau (VHL) gene and in a murine mouse model of Chuvash polycythemia that bears the same homozygous VhlR200W mutation. Moreover, the aged VhlR200W mice developed pulmonary fibrosis, most likely due to the increased expression of Cxcl-12, another Hif-2α target. Patients with mutations in iron regulatory protein 1 (IRP1) also develop polycythemia, and Irp1-knockout (Irp1-KO) mice exhibit polycythemia, pulmonary hypertension, and cardiac fibrosis attributable to translational derepression of Hif-2α, and the resultant high expression of the Hif-2α targets EPO, endothelin-1, and Cxcl-12. In this study, we inactivated Hif-2α with the second-generation allosteric HIF-2α inhibitor MK-6482 in VhlR200W, Irp1-KO, and double-mutant VhlR200W;Irp1-KO mice. MK-6482 treatment decreased EPO production and reversed polycythemia in all 3 mouse models. Drug treatment also decreased right ventricular pressure and mitigated pulmonary hypertension in VhlR200W, Irp1-KO, and VhlR200W;Irp1-KO mice to near normal wild-type levels and normalized the movement of the cardiac interventricular septum in VhlR200Wmice. MK-6482 treatment reduced the increased expression of Cxcl-12, which, in association with CXCR4, mediates fibrocyte influx into the lungs, potentially causing pulmonary fibrosis. Our results suggest that oral intake of MK-6482 could represent a new approach to treatment of patients with polycythemia, pulmonary hypertension, pulmonary fibrosis, and complications caused by elevated expression of HIF-2α.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Proteína 1 Reguladora de Hierro/fisiología , Policitemia/prevención & control , Sulfonas/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Animales , Endotelina-1/antagonistas & inhibidores , Endotelina-1/genética , Endotelina-1/metabolismo , Eritropoyetina/antagonistas & inhibidores , Eritropoyetina/genética , Eritropoyetina/metabolismo , Femenino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Policitemia/etiología , Policitemia/metabolismo , Policitemia/patología
6.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32438524

RESUMEN

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hígado Graso/etiología , Compuestos de Hierro/metabolismo , Peroxidación de Lípido , Metalochaperonas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Noqueados , Estrés Oxidativo
7.
Blood ; 132(19): 2078-2087, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30213870

RESUMEN

Ferroportin (FPN), the only known vertebrate iron exporter, transports iron from intestinal, splenic, and hepatic cells into the blood to provide iron to other tissues and cells in vivo. Most of the circulating iron is consumed by erythroid cells to synthesize hemoglobin. Here we found that erythroid cells not only consumed large amounts of iron, but also returned significant amounts of iron to the blood. Erythroblast-specific Fpn knockout (Fpn KO) mice developed lower serum iron levels in conjunction with tissue iron overload and increased FPN expression in spleen and liver without changing hepcidin levels. Our results also showed that Fpn KO mice, which suffer from mild hemolytic anemia, were sensitive to phenylhydrazine-induced oxidative stress but were able to tolerate iron deficiency upon exposure to a low-iron diet and phlebotomy, supporting that the anemia of Fpn KO mice resulted from erythrocytic iron overload and resulting oxidative injury rather than a red blood cell (RBC) production defect. Moreover, we found that the mean corpuscular volume (MCV) values of gain-of-function FPN mutation patients were positively associated with serum transferrin saturations, whereas MCVs of loss-of-function FPN mutation patients were not, supporting that erythroblasts donate iron to blood through FPN in response to serum iron levels. Our results indicate that FPN of erythroid cells plays an unexpectedly essential role in maintaining systemic iron homeostasis and protecting RBCs from oxidative stress, providing insight into the pathophysiology of FPN diseases.


Asunto(s)
Anemia Ferropénica/genética , Proteínas de Transporte de Catión/genética , Células Eritroides/patología , Hemólisis , Hierro/sangre , Mutación con Pérdida de Función , Estrés Oxidativo , Anemia Ferropénica/sangre , Anemia Ferropénica/patología , Animales , Proteínas de Transporte de Catión/análisis , Células Eritroides/metabolismo , Mutación con Ganancia de Función , Humanos , Hierro/análisis , Deficiencias de Hierro , Sobrecarga de Hierro/sangre , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/patología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Bazo/metabolismo , Bazo/patología
8.
Brain ; 142(5): 1195-1202, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30915432

RESUMEN

Disruption of cellular iron homeostasis can contribute to neurodegeneration. In mammals, two iron-regulatory proteins (IRPs) shape the expression of the iron metabolism proteome. Targeted deletion of Ireb2 in a mouse model causes profoundly disordered iron metabolism, leading to functional iron deficiency, anemia, erythropoietic protoporphyria, and a neurodegenerative movement disorder. Using exome sequencing, we identified the first human with bi-allelic loss-of-function variants in the gene IREB2 leading to an absence of IRP2. This 16-year-old male had neurological and haematological features that emulate those of Ireb2 knockout mice, including neurodegeneration and a treatment-resistant choreoathetoid movement disorder. Cellular phenotyping at the RNA and protein level was performed using patient and control lymphoblastoid cell lines, and established experimental assays. Our studies revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes, and mitochondrial dysfunction, as observed in the mouse model. The patient's cellular abnormalities were reversed by lentiviral-mediated restoration of IRP2 expression. These results confirm that IRP2 is essential for regulation of iron metabolism in humans, and reveal a previously unrecognized subclass of neurodegenerative disease. Greater understanding of how the IRPs mediate cellular iron distribution may ultimately provide new insights into common and rare neurodegenerative processes, and could result in novel therapies.


Asunto(s)
Variación Genética/fisiología , Proteína 2 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/genética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética , Adolescente , Línea Celular Transformada , Humanos , Masculino , Enfermedades Neurodegenerativas/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(22): 8031-6, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843120

RESUMEN

Although cells express hundreds of metalloenzymes, the mechanisms by which apoenzymes receive their metal cofactors are largely unknown. Poly(rC)-binding proteins PCBP1 and PCBP2 are multifunctional adaptor proteins that bind iron and deliver it to ferritin for storage or to prolyl and asparagyl hydroxylases to metallate the mononuclear iron center. Here, we show that PCBP1 and PCBP2 also deliver iron to deoxyhypusine hydroxylase (DOHH), the dinuclear iron enzyme required for hypusine modification of the translation factor eukaryotic initiation factor 5A. Cells depleted of PCBP1 or PCBP2 exhibited loss of DOHH activity and loss of the holo form of the enzyme in cells, particularly when cells were made mildly iron-deficient. Lysates containing PCBP1 and PCBP2 converted apo-DOHH to holo-DOHH in vitro with greater efficiency than lysates lacking PCBP1 or PCBP2. PCBP1 bound to DOHH in iron-treated cells but not in control or iron-deficient cells. Depletion of PCBP1 or PCBP2 had no effect on the cytosolic Fe-S cluster enzyme xanthine oxidase but led to loss of cytosolic aconitase activity. Loss of aconitase activity was not accompanied by gain of RNA-binding activity, a pattern suggesting the incomplete disassembly of the [4Fe-4S] cluster. PCBP depletions had minimal effects on total cellular iron, mitochondrial iron levels, and heme synthesis. Thus, PCBP1 and PCBP2 may serve as iron chaperones to multiple classes of cytosolic nonheme iron enzymes and may have a particular role in restoring metal cofactors that are spontaneously lost in iron deficient cells.


Asunto(s)
Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hierro/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Unión al ARN/metabolismo , Carcinoma Hepatocelular , Citosol/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Hemo/biosíntesis , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteínas Hierro-Azufre/metabolismo , Neoplasias Hepáticas , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
10.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L393-402, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719148

RESUMEN

Hypersensitivity pneumonitis (HP) is an immune-mediated interstitial lung disease that develops following repeated exposure to inhaled environmental antigens. The disease results in alveolitis and granuloma formation and may progress to a chronic form associated with fibrosis; a greater understanding of the immunopathogenic mechanisms leading to chronic HP is needed. We used the Saccharopolyspora rectivirgula (SR) mouse model of HP to determine the extent to which a switch to a Th2-type immune response is associated with chronic HP. Exposure of wild-type (WT) and tlr2/9(-/-) mice to SR for 14 wk resulted in neutrophilic and lymphocytic alveolitis that was not dependent on Toll-like receptors (TLRs) 2 and 9. Long-term exposure of WT mice to SR resulted in a significant increase in collagen deposition, protein leakage, and IL-1α accompanied by a decrease in quasistatic compliance and total lung capacity compared with unexposed mice. This was associated with an increase in IL-17 but not IL-4 production or recruitment of Th2 cells. tlr2/9(-/-) mice exhibited an increase in protein leakage but less IL-1α and collagen deposition in the lungs compared with WT mice, yet they still displayed a decrease in quasistatic compliance, although total lung capacity was not affected. These mice exhibited an increase in both IL-13 and IL-17, which suggests that IL-13 may ameliorate some of the lung damage caused by long-term SR exposure. Our results suggest that lung pathology following long-term SR exposure in WT mice is associated with the IL-17 response and that TLRs 2 and 9 may inhibit the development of the IL-13/Th2 response.


Asunto(s)
Alveolitis Alérgica Extrínseca/inmunología , Alveolitis Alérgica Extrínseca/patología , Saccharopolyspora , Células Th2/citología , Animales , Citocinas/biosíntesis , Femenino , Interleucina-17/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th2/inmunología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/metabolismo
11.
Hum Mol Genet ; 23(1): 24-39, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23943793

RESUMEN

Iron-sulfur (Fe-S) clusters are ancient enzyme cofactors found in virtually all life forms. We evaluated the physiological effects of chronic Fe-S cluster deficiency in human skeletal muscle, a tissue that relies heavily on Fe-S cluster-mediated aerobic energy metabolism. Despite greatly decreased oxidative capacity, muscle tissue from patients deficient in the Fe-S cluster scaffold protein ISCU showed a predominance of type I oxidative muscle fibers and higher capillary density, enhanced expression of transcriptional co-activator PGC-1α and increased mitochondrial fatty acid oxidation genes. These Fe-S cluster-deficient muscles showed a dramatic up-regulation of the ketogenic enzyme HMGCS2 and the secreted protein FGF21 (fibroblast growth factor 21). Enhanced muscle FGF21 expression was reflected by elevated circulating FGF21 levels in the patients, and robust FGF21 secretion could be recapitulated by respiratory chain inhibition in cultured myotubes. Our findings reveal that mitochondrial energy starvation elicits a coordinated response in Fe-S-deficient skeletal muscle that is reflected systemically by increased plasma FGF21 levels.


Asunto(s)
Acidosis Láctica/congénito , Factores de Crecimiento de Fibroblastos/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas Hierro-Azufre/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/congénito , Factores de Transcripción/genética , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Acidosis Láctica/patología , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Metabolismo Energético , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas Hierro-Azufre/genética , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/metabolismo
12.
Blood ; 124(9): 1522-30, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24963040

RESUMEN

Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans.


Asunto(s)
Hemo-Oxigenasa 1/deficiencia , Macrófagos del Hígado/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/deficiencia , Anemia Hemolítica Congénita/metabolismo , Anemia Hemolítica Congénita/patología , Anemia Hemolítica Congénita/terapia , Animales , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Femenino , Hemo/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Hierro/metabolismo , Riñón/metabolismo , Riñón/patología , Macrófagos del Hígado/trasplante , Macrófagos/trasplante , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo
13.
Neurobiol Dis ; 81: 66-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25771171

RESUMEN

Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify the expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack the expression of one or both Irps and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1(-/-)Irp2(-/-)) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1(-/-) mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2(-/-) mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1(-/-) mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1(-/-) mice and discuss the phenotypes observed for Irp2(-/-) mice in detail with a particular emphasis on the neurological problems of these mice.


Asunto(s)
Trastornos del Metabolismo del Hierro/etiología , Proteínas Reguladoras del Hierro/deficiencia , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Trastornos del Metabolismo del Hierro/genética , Proteínas Reguladoras del Hierro/genética , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética
15.
J Biol Chem ; 287(48): 40119-30, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23035118

RESUMEN

BACKGROUND: ISCU myopathy is a disease caused by muscle-specific deficiency of the Fe-S cluster scaffold protein ISCU. RESULTS: MyoD expression enhanced ISCU mRNA mis-splicing, and oxidative stress exacerbated ISCU depletion in patient cells. CONCLUSION: ISCU protein deficiency in patients results from muscle-specific mis-splicing as well as oxidative stress. SIGNIFICANCE: Oxidative stress negatively influences the mammalian Fe-S cluster assembly machinery by destabilization of ISCU. Iron-sulfur (Fe-S) cluster cofactors are formed on the scaffold protein ISCU. ISCU myopathy is a disease caused by an intronic mutation that leads to abnormally spliced ISCU mRNA. We found that two predominant mis-spliced ISCU mRNAs produce a truncated and short-lived ISCU protein product in multiple patient cell types. Expression of the muscle-specific transcription factor MyoD further diminished normal splicing of ISCU mRNA in patient myoblasts, demonstrating that the process of muscle differentiation enhances the loss of normal ISCU mRNA splicing. ISCU protein was nearly undetectable in patient skeletal muscle, but was higher in patient myoblasts, fibroblasts, and lymphoblasts. We next treated patient cells with pro-oxidants to mimic the oxidative stress associated with muscle activity. Brief hydrogen peroxide treatment or incubation in an enriched oxygen atmosphere led to a marked further reduction of ISCU protein levels, which could be prevented by pretreatment with the antioxidant ascorbate. Thus, we conclude that skeletal muscle differentiation of patient cells causes a higher degree of abnormal ISCU splicing and that oxidative stress resulting from skeletal muscle work destabilizes the small amounts of normal ISCU protein generated in patient skeletal muscles.


Asunto(s)
Diferenciación Celular , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/metabolismo , Músculo Esquelético/citología , Estrés Oxidativo , Empalme del ARN , Adulto , Anciano , Animales , Femenino , Humanos , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Especificidad de Órganos , Adulto Joven
16.
Am J Physiol Lung Cell Mol Physiol ; 305(3): L222-8, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23709620

RESUMEN

Alveolar type II (ATII) epithelial cells play a crucial role in the repair and remodeling of the lung following injury. ATII cells have the capability to proliferate and differentiate into alveolar type I (ATI) cells in vivo and into an ATI-like phenotype in vitro. While previous reports indicate that the differentiation of ATII cells into ATI cells is a complex biological process, the underlying mechanism responsible for differentiation is not fully understood. To investigate factors involved in this differentiation in culture, we used a PCR array and identified several genes that were either up- or downregulated in ATI-like cells (day 6 in culture) compared with day 2 ATII cells. Insulin-like growth factor-I (IGF-I) mRNA was increased nearly eightfold. We found that IGF-I was increased in the culture media of ATI-like cells and demonstrated a significant role in the differentiation process. Treatment of ATII cells with recombinant IGF-I accelerated the differentiation process, and this effect was abrogated by the IGF-I receptor blocker PQ401. We found that Wnt5a, a member of the Wnt-Frizzled pathway, was activated during IGF-I-mediated differentiation. Both protein kinase C and ß-catenin were transiently activated during transdifferentiation. Knocking down Wnt5a using small-interfering RNA abrogated the differentiation process as indicated by changes in the expression of an ATII cell marker (prosurfactant protein-C). Treatment of wounded cells with either IGF-I or Wnt5a stimulated wound closure. These results suggest that IGF-I promotes differentiation of ATII to ATI cells through the activation of a noncanonical Wnt pathway.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/fisiología , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Proteínas Wnt/metabolismo , Aminoquinolinas/farmacología , Animales , Diferenciación Celular , Proliferación Celular , Transdiferenciación Celular , Células Cultivadas , Activación Enzimática , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Compuestos de Fenilurea/farmacología , Proteína Quinasa C/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Proteínas Recombinantes/farmacología , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteína Wnt-5a , Cicatrización de Heridas , beta Catenina/metabolismo
17.
Blood ; 118(10): 2868-77, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21700773

RESUMEN

The iron-regulatory hormone, hepcidin, regulates systemic iron homeostasis by interacting with the iron export protein ferroportin (FPN1) to adjust iron absorption in enterocytes, iron recycling through reticuloendothelial macrophages, and iron release from storage in hepatocytes. We previously demonstrated that FPN1 was highly expressed in erythroblasts, a cell type that consumes most of the serum iron for use in hemoglobin synthesis. Herein, we have demonstrated that FPN1 localizes to the plasma membrane of erythroblasts, and hepcidin treatment leads to decreased expression of FPN1 and a subsequent increase in intracellular iron concentrations in both erythroblast cell lines and primary erythroblasts. Moreover, injection of exogenous hepcidin decreased FPN1 expression in BM erythroblasts in vivo, whereas iron depletion and associated hepcidin reduction led to increased FPN1 expression in erythroblasts. Taken together, hepcidin decreased FPN1 expression and increased intracellular iron availability of erythroblasts. We hypothesize that FPN1 expression in erythroblasts allows fine-tuning of systemic iron utilization to ensure that erythropoiesis is partially suppressed when nonerythropoietic tissues risk developing iron deficiency. Our results may explain why iron deficiency anemia is the most pronounced early manifestation of mammalian iron deficiency.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Transporte de Catión/metabolismo , Eritroblastos/efectos de los fármacos , Eritroblastos/metabolismo , Hierro/metabolismo , Animales , Western Blotting , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Eritroblastos/citología , Feto/citología , Feto/efectos de los fármacos , Feto/metabolismo , Hepcidinas , Homeostasis , Inmunoprecipitación , Hierro de la Dieta/administración & dosificación , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Am J Respir Cell Mol Biol ; 46(4): 461-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22052879

RESUMEN

Both hyperoxia and mechanical ventilation can independently cause lung injury. In combination, these insults produce accelerated and severe lung injury. We recently reported that pre-exposure to hyperoxia for 12 hours, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone. We also reported that such injury and apoptosis are inhibited by antioxidant treatment. In this study, we hypothesized that apoptosis signal-regulating kinase-1 (ASK-1), a redox-sensitive, mitogen-activated protein kinase kinase kinase, plays a role in lung injury and apoptosis in this model. To determine the role of ASK-1 in lung injury, the release of inflammatory mediators and apoptosis, attributable to 12 hours of hyperoxia, were followed by large tidal volume mechanical ventilation with hyperoxia. Wild-type and ASK-1 knockout mice were subjected to hyperoxia (Fi(O(2)) = 0.9) for 12 hours before 4 hours of large tidal mechanical ventilation (tidal volume = 25 µl/g) with hyperoxia, and were compared with nonventilated control mice. Lung injury, apoptosis, and cytokine release were measured. The deletion of ASK-1 significantly inhibited lung injury and apoptosis, but did not affect the release of inflammatory mediators, compared with the wild-type mice. ASK-1 is an important regulator of lung injury and apoptosis in this model. Further study is needed to determine the mechanism of lung injury and apoptosis by ASK-1 and its downstream mediators in the lung.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/enzimología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Apoptosis/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Células Epiteliales/patología , Femenino , Hiperoxia/enzimología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Alveolos Pulmonares/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
19.
Am J Physiol Lung Cell Mol Physiol ; 302(9): L846-56, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22345572

RESUMEN

Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.


Asunto(s)
Movimiento Celular , Células Epiteliales/fisiología , Metaloproteinasa 2 de la Matriz/metabolismo , Alveolos Pulmonares/patología , Receptores CXCR4/fisiología , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Bencilaminas , Células Cultivadas , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/fisiología , Ciclamas , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos/farmacología , Masculino , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Regulación hacia Arriba , Proteína de Unión al GTP rac1/antagonistas & inhibidores
20.
Blood ; 116(26): 6054-62, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20844238

RESUMEN

To better understand the tissue iron overload and anemia previously reported in a human patient and mice that lack heme oxygenase-1 (HO-1), we studied iron distribution and pathology in HO-1(Hmox1)(-/-) mice. We found that resident splenic and liver macrophages were mostly absent in HO-1(-/-) mice. Erythrophagocytosis caused the death of HO-1(-/-) macrophages in in vitro experiments, supporting the hypothesis that HO-1(-/-) macrophages died of exposure to heme released on erythrophagocytosis. Rupture of HO-1(-/-) macrophages in vivo and release of nonmetabolized heme probably caused tissue inflammation. In the spleen, initial splenic enlargement progressed to red pulp fibrosis, atrophy, and functional hyposplenism in older mice, recapitulating the asplenia of an HO-1-deficient patient. We postulate that the failure of tissue macrophages to remove senescent erythrocytes led to intravascular hemolysis and increased expression of the heme and hemoglobin scavenger proteins, hemopexin and haptoglobin. Lack of macrophages expressing the haptoglobin receptor, CD163, diminished the ability of haptoglobin to neutralize circulating hemoglobin, and iron overload occurred in kidney proximal tubules, which were able to catabolize heme with HO-2. Thus, in HO-1(-/-) mammals, the reduced function and viability of erythrophagocytosing macrophages are the main causes of tissue damage and iron redistribution.


Asunto(s)
Eritrocitos/patología , Hemo-Oxigenasa 1/fisiología , Hemo/metabolismo , Hierro/metabolismo , Hígado/patología , Macrófagos/patología , Bazo/patología , Anemia/metabolismo , Anemia/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células Cultivadas , Eritrocitos/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Fagocitosis , Receptores de Superficie Celular/metabolismo , Bazo/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA