Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(2): e4-e23, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38860377

RESUMEN

BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Macrófagos , Placa Aterosclerótica , Receptores de Superficie Celular , Humanos , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Animales , Antígenos CD/metabolismo , Antígenos CD/genética , Macrófagos/metabolismo , Macrófagos/patología , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Ratones , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Masculino , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Apoptosis , Femenino , Transición Epitelial-Mesenquimal , Vasos Coronarios/patología , Vasos Coronarios/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38328934

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
3.
Arterioscler Thromb Vasc Biol ; 44(1): 300-313, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916415

RESUMEN

BACKGROUND: Polygenic risk scores (PRSs) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. METHODS: From 4327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner for sudden death between 1994 and 2015, 2455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas, and thrombotic CAD. RESULTS: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age, 48.8±14.7 years; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared with subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% versus 50.4%±38.7%; adjusted P<0.001) and a higher frequency of calcification (69.6% versus 35.8%; adjusted P=0.004) and thin-cap fibroatheroma (26.7% versus 9.5%; adjusted P=0.007). Even after adjustment for traditional CAD risk factors, subjects within the highest PRS quintile had higher odds of severe atherosclerosis (ie, ≥75% stenosis; adjusted odds ratio, 3.77 [95% CI, 2.10-6.78]; P<0.001) and plaque rupture (adjusted odds ratio, 4.05 [95% CI, 2.26-7.24]; P<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged ≤50 years (adjusted odds ratio, 4.08 [95% CI, 2.01-8.30]; P<0.001). No statistically significant associations were observed with plaque erosion after adjusting for covariates. CONCLUSIONS: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Masculino , Humanos , Adulto , Persona de Mediana Edad , Femenino , Puntuación de Riesgo Genético , Constricción Patológica , Factores de Riesgo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Muerte Súbita , Autopsia
4.
J Am Chem Soc ; 146(21): 14844-14855, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747446

RESUMEN

Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.


Asunto(s)
Adenosina Trifosfato , Imidas , Naftalenos , Polimerizacion , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/síntesis química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Imidas/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/síntesis química , Estructura Molecular , Cinética , Polímeros/química
5.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772452

RESUMEN

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Endocitosis , Paraplejía Espástica Hereditaria , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Complejo 2 de Proteína Adaptadora/genética , Endocitosis/genética , Endocitosis/fisiología , Mutación/genética , Mutación Missense , Neuronas/metabolismo , Neuronas/patología , Linaje , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Xenopus
6.
Arterioscler Thromb Vasc Biol ; 43(12): 2333-2347, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37881937

RESUMEN

BACKGROUND: Studies in humans and mice using the expression of an X-linked gene or lineage tracing, respectively, have suggested that clones of smooth muscle cells (SMCs) exist in human atherosclerotic lesions but are limited by either spatial resolution or translatability of the model. METHODS: Phenotypic clonality can be detected by X-chromosome inactivation patterns. We investigated whether clones of SMCs exist in unstable human atheroma using RNA in situ hybridization (BaseScope) to identify a naturally occurring 24-nucleotide deletion in the 3'UTR of the X-linked BGN (biglycan) gene, a proteoglycan highly expressed by SMCs. BGN-specific BaseScope probes were designed to target the wild-type or deletion mRNA. Three different coronary artery plaque types (erosion, rupture, and adaptive intimal thickening) were selected from heterozygous females for the deletion BGN. Hybridization of target RNA-specific probes was used to visualize the spatial distribution of mutants. A clonality index was calculated from the percentage of each probe in each region of interest. Spatial transcriptomics were used to identify differentially expressed transcripts within clonal and nonclonal regions. RESULTS: Less than one-half of regions of interest in the intimal plaque were considered clonal with the mean percent regions of interest with clonality higher in the intimal plaque than in the media. This was consistent for all plaque types. The relationship of the dominant clone in the intimal plaque and media showed significant concordance. In comparison with the nonclonal lesions, the regions with SMC clonality had lower expression of genes encoding cell growth suppressors such as CD74, SERF-2 (small EDRK-rich factor 2), CTSB (cathepsin B), and HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1), among others. CONCLUSIONS: Our novel approach to examine clonality suggests atherosclerosis is primarily a disease of polyclonally and to a lesser extent clonally expanded SMCs and may have implications for the development of antiatherosclerotic therapies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Femenino , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Células Clonales/patología , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , ARN
7.
Angew Chem Int Ed Engl ; : e202413747, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172958

RESUMEN

The amplification of asymmetry in supramolecular polymers has recently garnered significant attention. While asymmetry amplification has predominantly been explored under thermodynamic conditions, the kinetic aspect of this process unveils intriguing observations, yet is scarcely reported in the literature. Herein, drawing inspiration from macromolecular systems, we propose a novel strategy for enhancing asymmetry in supramolecular polymers through a seed-induced supramolecular polymerization approach under kinetic conditions, employing a naphthalene diimide-derived monomer (ANSG) for template-induced supramolecular polymerization, utilizing adenosine triphosphate (ATP) and pyrophosphate (PPi) as templates. A chiral seed comprising [ANSG-ATP]S effectively amplifies the overall supramolecular asymmetry when exposed to a mixture of achiral templates (PPi) and monomers (ANSG), owing to its efficient seeding characteristics under kinetic conditions. As a result of efficient co-operativity, conversely, employing an achiral seed [ANSG-PPi]S in a mixture of chiral templates (ATP) and monomers (ANSG) results in the attenuation of asymmetry, highlighting the effective modulation achievable through the seeding approach, an unprecedented observation in the field. Exploiting the efficient aggregation-induced emission enhancement (AIEE) of the resultant supramolecular polymers further extends the amplification and attenuation of circularly polarized luminescence (CPL) as a potential function.

8.
Semin Cancer Biol ; 86(Pt 3): 1216-1230, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36330953

RESUMEN

Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.


Asunto(s)
Glucólisis , Neoplasias , Humanos , Ciclo del Ácido Cítrico , Ácido Láctico , Glucosa
9.
Am Heart J ; 256: 37-50, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36372247

RESUMEN

BACKGROUND: Neighborhood disadvantage is associated with a higher risk of sudden cardiac death. However, autopsy findings have never been investigated in this context. Here, we sought to explore associations between neighborhood disadvantage and cardiovascular findings at autopsy in cases of sudden death in the State of Maryland. METHODS: State of Maryland investigation reports from 2,278 subjects within the CVPath Sudden Death Registry were screened for street addresses and 9-digit zip codes. Area deprivation index (ADI), used as metric for neighborhood disadvantage, was available for 1,464 subjects; 650 of whom self-identified as Black and 814 as White. The primary study outcome measurements were causes of death and gross and histopathologic findings of the heart. RESULTS: Subjects from most disadvantaged neighborhoods (i.e., ADI ≥ 8; n = 607) died at younger age compared with subjects from less disadvantaged neighborhoods (i.e., ADI ≤ 7; n = 857; 46.07 ± 14.10 vs 47.78 ± 13.86 years; P = 0.02) and were more likely Black or women. They were less likely to die from cardiac causes of death (61.8% vs 67.7%; P = 0.02) and had less severe atherosclerotic plaque features, including plaque burden, calcification, intraplaque hemorrhage, and thin-cap fibroatheromas. In addition, subjects from most disadvantaged neighborhoods had lower frequencies of plaque rupture (18.8% vs 25.1%, P = 0.004). However, these associations were omitted after adjustment for traditional risk factors and race. CONCLUSION: Neighborhood disadvantage did not associate with cause of death or coronary histopathology after adjustment for cardiovascular risk factors and race, implying that social determinants of health other than neighborhood disadvantage play a more prominent role in sudden cardiac death.


Asunto(s)
Placa Aterosclerótica , Características de la Residencia , Humanos , Femenino , Autopsia , Factores de Riesgo , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Características del Vecindario , Factores Socioeconómicos
10.
Mol Pharm ; 20(6): 3073-3087, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37218930

RESUMEN

Covalent conjugation of a biologically stable polymer to a therapeutic protein, e.g., an antibody, holds many benefits such as prolonged plasma exposure of the protein and improved tumor uptake. Generation of defined conjugates is advantageous in many applications, and a range of site-selective conjugation methods have been reported. Many current coupling methods lead to dispersity in coupling efficiencies with subsequent conjugates of less-well-defined structure, which impacts reproducibility of manufacture and ultimately may impact successful translation to treat or image diseases. We explored designing stable, reactive groups for polymer conjugation reactions that would lead to conjugates through the simplest and most abundant residue on most proteins, the lysine residue, yielding conjugates in high purity and demonstrating retention of mAb efficacy through surface plasmon resonance (SPR), cell targeting, and in vivo tumor targeting. We utilized squaric acid diesters as coupling agents for selective amidation of lysine residues and were able to selectively conjugate one, or two, high-molecular-weight polymers to a therapeutically relevant antibody, 528mAb, that subsequently retained full binding specificity. Water-soluble copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and N-isopropylacrylamide (NIPAM) were prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization and we demonstrated that a dual-dye-labeled antibody-RAFT conjugate (528mAb-RAFT) exhibited effective tumor targeting in model breast cancer xenografts in mice. The combination of the precise and selective squaric acid ester conjugation method, with the use of RAFT polymers, leads to a promising strategic partnership for improved therapeutic protein-polymer conjugates having a very-well-defined structure.


Asunto(s)
Neoplasias , Polímeros , Humanos , Animales , Ratones , Polímeros/química , Lisina , Reproducibilidad de los Resultados , Anticuerpos , Proteínas/química
11.
Mol Pharm ; 20(3): 1549-1563, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602058

RESUMEN

Glioblastoma (GBM) is the most aggressive form of primary brain cancer, accounting for about 85% of all primary central nervous system (CNS) tumors. With standard treatment strategies like surgery, radiation, and chemotherapy, the median survival time of patients with GBM is only 12-15 months from diagnosis. The poor prognosis of GBM is due to a very high tumor recurrence rate following initial treatment, indicating a dire need for improved diagnostic and therapeutic alternatives for this disease. Antibody-based immunotheranostics holds great promise in treating GBM, combining the theranostic applications of radioisotopes and target-specificity of antibodies. In this study, we developed and validated antibody-based positron emission tomography (PET) tracers targeting the heparan sulfate proteoglycan, glypican-1 (GPC-1), for noninvasive detection of disease using diagnostic molecular imaging. GPC-1 is overexpressed in multiple solid tumor types, including GBM, and is a promising biomarker for novel immunotheranostics. Here, we investigate zirconium-89 (89Zr)-conjugated Miltuximab (a clinical stage anti-GPC-1 monoclonal antibody developed by GlyTherix, Ltd.) and engineered fragments for their potential as immuno-PET tracers to detect GPC-1positive GBM tumors in preclinical models. We explore the effects of molecular size, avidity, and Fc-domain on the pharmacokinetics and biodistribution in vivo, by comparing in parallel the full-length antibody (Miltuximab), Fab'2, Fab, and single-chain variable fragment (scFv) formats. High radiolabeling efficiency (>95%) was demonstrated by all the formats and the stability post-radiolabeling was higher for larger constructs of Miltuximab and the Fab. Receptor-mediated internalization of all 89Zr-labeled formats was observed in a human GBM cell line in vitro, while full-length Miltuximab demonstrated the highest tumor retention (5.7 ± 0.94% ID/g, day-9 postinjection (p.i.)) and overall better tumor-to-background ratios than the smaller Fc-less formats. Results from in vivo PET image quantification and ex vivo scintillation counting were highly correlated. Altogether, 89Zr-DFO-Miltuximab appears to be an effective immuno-PET imaging agent for detecting GPC-1positive tumors such as GBM and the current results support utility of the Fc containing whole mAb format over smaller antibody fragments for this target.


Asunto(s)
Glioblastoma , Glipicanos , Humanos , Distribución Tisular , Anticuerpos Monoclonales/farmacocinética , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones/métodos , Circonio , Fragmentos de Inmunoglobulinas , Línea Celular Tumoral
12.
J Vasc Interv Radiol ; 34(7): 1166-1175.e2, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37003576

RESUMEN

PURPOSE: To evaluate the incidence of distal embolism and local vascular responses after treatment with the Kanshas drug-coated balloon (DCB) in a preclinical model. MATERIALS AND METHODS: A total of 90 femoral arteries from 35 healthy swine were treated with a single-dose (×1) or triple-dose (×3) Kanshas DCB that applies the Unicoat technology with 3.2 µg/mm2 of paclitaxel. An uncoated Kanshas balloon was used as a control. The arterial wall, downstream skeletal muscle, and nontarget organs (kidneys, lungs, lymph nodes, liver, spleen, and heart) were histologically evaluated. For pharmacokinetic evaluation, a total of 40 healthy swine were treated with ×1 Kanshas DCB, and treated vessels were evaluated ex vivo with high-performance liquid chromatography-mass spectrometry. RESULTS: Arteries treated with the Kanshas DCB showed mild proteoglycan deposition accompanied by the loss of smooth muscle cells (SMCs). These changes increased in a dose-dependent manner (medial SMC loss at 28 days in the ×1 vs ×3 groups, in depth, 1 (0.75-1.38) vs 2 (1.63-2.44); P = .0008; in circumference, 0.83 (0.67-1) vs 1.5 (1.19-1.81); P = .0071). No evidence of distal embolization in skeletal muscles (0 of 210 histological sections) and nontarget organs (0 of 345 sections) was observed. The pharmacokinetic evaluation showed high paclitaxel concentration in the treated artery (912 ng/mg, peaking at 3 minutes), which remained detectable at up to 180 days (0.04 ng/mg). CONCLUSIONS: The Kanshas DCB showed a local drug effect in treated arteries up to 180 days with a high concentration of paclitaxel and no histological evidence of distal embolization.


Asunto(s)
Arteria Femoral , Enfermedad Arterial Periférica , Animales , Arteria Femoral/efectos de los fármacos , Arteria Femoral/cirugía , Enfermedad Arterial Periférica/tratamiento farmacológico , Paclitaxel/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Porcinos , Angioplastia de Balón
13.
Angew Chem Int Ed Engl ; 62(38): e202308281, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37534951

RESUMEN

Efficient circularly polarized luminescence (CPL) from purely organic molecules holds great promise for applications in displays, sensing, and bioimaging. However, achieving high dissymmetry values (glum ) from organic chromophores remains a significant challenge. Herein, we present a bioinspired approach using adenosine triphosphate (ATP)-triggered supramolecular polymerization of a naphthalene diimide-derived monomer (ANSG) to induce CPL with a remarkable glum value of 1.1×10-2 . The ANSG molecules undergo a templated, chiral self-assembly through a cooperative growth mechanism in the presence of ATP, resulting in scrolled nanotubes with aggregation-induced enhanced emission (AIEE) and induced CPL. Furthermore, we demonstrate the concept of chiroptical amplification of induced CPL by efficiently amplifying asymmetry using a mixture of chiral ATP and achiral pyrophosphate. This innovative approach opens numerous opportunities in the emerging field of circularly polarized luminescence.

14.
Curr Atheroscler Rep ; 24(1): 23-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35175547

RESUMEN

PURPOSE OF REVIEW: The importance of cardiovascular disease (CVD) in women has long been underestimated. Therefore, we need to understand the impact of sex differences on CVD. RECENT FINDINGS: Traditional risk factors contribute to coronary artery disease (CAD) differently in women and men. There are female-specific risk factors and comorbid conditions that affect the risk of CAD. Plaque erosion is frequently seen in younger women who smoke, while plaque rupture is common in older women and men who have elevated blood cholesterol. Coronary artery calcification is also different in both sexes. Thus, coronary artery calcification score-based risk stratification in women is challenging. A deeper understanding of the sex differences in the risk factors and plaque morphology of coronary atherosclerosis may lead to improved outcomes of CVD in women.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Anciano , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/epidemiología , Femenino , Humanos , Masculino , Placa Aterosclerótica/diagnóstico por imagen , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales
15.
Mol Pharm ; 19(5): 1233-1247, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35438509

RESUMEN

Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia
16.
Curr Microbiol ; 79(7): 203, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35612625

RESUMEN

The present study was undertaken to evaluate the putative antiviral activity of Rosmarinic acid (RA) against four serotypes of dengue virus (DENV). Our previous in silico binding analysis revealed that RA binds strongly to the envelope domain III (EDIII) protein of all four DENV serotypes. We employed an in vitro Biolayer Interferometry-based OCTET™ platform to study the binding interaction of RA with EDIII protein of the four DENV serotypes. Additionally, a functional plaque assay was developed to investigate the potential inhibition of infection of the four DENV serotypes. Using OCTET™, the binding interaction of RA to DENV-EDIII protein of the four DENV serotypes demonstrates interaction which can be arranged in the following order: EDIII-DENV1 (Koff value of 1.05 s-1) > EDIII-DENV2 (Koff value of 5.63 × 10-01 s-1) > EDIII-DENV3 (Koff value of 4.63 × 10-02 s-1) > EDIII-DENV4 (Koff value of 3.53 × 10-02 s-1). Subsequently, the inhibiting ability of RA using plaque assay confirmed reduction in the number of plaques for all four serotypes, indicating the ability of RA not only to bind, but also to inhibit the infection of four serotypes in cell culture, while being non-toxic at the concentrations used in the study. However, the effect of RA was variable on different serotypes, demonstrating highest effect on DENV1 (EC50 = 13.73 µg/mL, SI ≥ 728) followed by DENV2 (EC50 = 77.74 µg/mL, SI ≥ 129), DENV3 (EC50 = 244 µg/mL, SI ≥ 41) and DENV4 (EC50 = 280 µg/mL, SI ≥ 36).


Asunto(s)
Virus del Dengue , Dengue , Anticuerpos Antivirales , Antivirales/farmacología , Cinamatos , Dengue/tratamiento farmacológico , Virus del Dengue/metabolismo , Depsidos , Humanos , Serogrupo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Ácido Rosmarínico
17.
Mol Cell ; 50(5): 711-22, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746353

RESUMEN

Pausing of RNA polymerase II (Pol II) 20-60 bp downstream of transcription start sites is a major checkpoint during transcription in animal cells. Mechanisms that control pausing are largely unknown. We developed permanganate-ChIP-seq to evaluate the state of Pol II at promoters throughout the Drosophila genome, and a biochemical system that reconstitutes promoter-proximal pausing to define pausing mechanisms. Stable open complexes of Pol II are largely absent from the transcription start sites of most mRNA genes but are present at snRNA genes and the highly transcribed heat shock genes following their induction. The location of the pause is influenced by the timing between when NELF loads onto Pol II and how fast Pol II escapes the promoter region. Our biochemical analysis reveals that the sequence-specific transcription factor, GAF, orchestrates efficient pausing by recruiting NELF to promoters before transcription initiation and by assisting in loading NELF onto Pol II after initiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Genoma de los Insectos , Proteínas HSP70 de Choque Térmico/genética , Cinética , Compuestos de Manganeso/química , Óxidos/química , ARN Polimerasa II/genética , ARN Nuclear Pequeño , Factores de Transcripción/genética , Transcripción Genética
18.
Nanomedicine ; 31: 102320, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075540

RESUMEN

The current work aims to explore the biological characteristics of vincristine synergistic co-loading into pegylated liposomal doxorubicin in non-indicated modalities of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). The combinatorial liposome prepared by active co-loading of the drugs against modified ammonium ion gradient exhibited 95% encapsulation of both drugs. The cellular uptake studies using confocal microscopy and flow cytometry showed significantly increased uptake of dual drug formulation as against liposomal doxorubicin. The co-loaded liposome formulation had significantly increased cell cycle arrest in G2/M phase with subsequent apoptosis and reduced cell viability in both tumor cell lines than doxorubicin liposome. This carrier exhibited similar acute toxicity, pharmacokinetic and tissue distribution profiles with significant increase in tumor regression as compared to liposomal doxorubicin. These results indicate that co-encapsulation of vincristine into clinically used pegylated liposomal doxorubicin significantly improved in-vitro and in-vivo therapeutic efficacy against NSCLC and TNBC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Doxorrubicina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vincristina/uso terapéutico , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Sinergismo Farmacológico , Femenino , Humanos , Polietilenglicoles/uso terapéutico
19.
Proc Natl Acad Sci U S A ; 115(37): E8634-E8641, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139915

RESUMEN

Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/metabolismo , Proteínas de Insectos/metabolismo , Feromonas/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Animales , Vías Biosintéticas/genética , Heterópteros/enzimología , Heterópteros/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Masculino , Modelos Moleculares , Estructura Molecular , Feromonas/química , Filogenia , Fosfatos de Poliisoprenilo/metabolismo , Dominios Proteicos , Sesquiterpenos/química , Estereoisomerismo
20.
Nano Lett ; 20(6): 4659-4666, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32437616

RESUMEN

High quality factor mechanical resonators have shown great promise in the development of classical and quantum technologies. Simultaneously, progress has been made in developing controlled mechanical nonlinearity. Here, we combine these two directions of progress in a single platform consisting of coupled silicon nitride (SiNx) and graphene mechanical resonators. We show that nonlinear response can be induced on a large area SiNx resonator mode and can be efficiently controlled by coupling it to a gate-tunable, freely suspended graphene mode. The induced nonlinear response of the hybrid modes, as measured on the SiNx resonator surface is giant, with one of the highest measured Duffing constants. We observe a novel phononic frequency comb which we use as an alternate validation of the measured values, along with numerical simulations which are in overall agreement with the measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA