Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Org Chem ; 89(11): 8192-8200, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38781553

RESUMEN

The pursuit of heat-resistant energetic materials featuring high thermostability and energy has gained keen interest in recent years owing to their use in coal mining and aerospace domains. In this study, we synthesized 4-((4,6-diamino-1,3,5-triazin-2-yl) amino)-1H-1,2,3-triazole-5-carbonitrile (6) and its perchlorate and nitrate energetic salts (6a and 6b) by incorporating amino bridging (-NH-) using the Dimroth rearrangement (DR) from inexpensive starting materials as a heat-resistant energetic materials. All of the compounds were thoroughly characterized by infrared (IR), NMR, elemental analysis (EA), high-resolution mass spectrometry (HRMS), and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) studies. Compounds 6a and 6b showed good densities (1.81 and 1.80 g cm-3), detonation performance (VOD = 7505 and 8257 m s-1, DP = 23.47 and 24.41 GPa), insensitivity to mechanical stimuli (IS = 40 J and FS = >360 N), and excellent thermal stability (Td = 307 and 334 °C), surpassing presently used heat-resistant explosive HNS (318 °C). The molecular electrostatic potentials and noncovalent interactions were pursued to understand possible interaction sites and structure-directing interactions in these salts. Their facile synthetic approach, good energetic performance, and outstanding thermal stability indicate that they are the ideal combination for replacing current benchmark heat-resistant explosive HNS. Additionally, this study highlights the use of classical DR for making new energetic materials with fine-tuned properties.

2.
Inorg Chem ; 63(32): 15144-15153, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39092494

RESUMEN

Two novel nitrogen-rich green energetic compounds were synthesized for the first time from readily available and cost-effective pyrazine starting materials. All newly synthesized molecules were comprehensively characterized, including infrared spectroscopy, nuclear magnetic resonance, elemental analysis, mass spectrometry, and thermogravimetric analysis-differential scanning calorimetry. All compounds have additionally been validated by single-crystal X-ray diffraction analysis. The physicochemical properties of compounds 2, 4, and 5 were thoroughly investigated. Notably, all compounds exhibit remarkable performance, such as a high density (>1.84 g cm-3), excellent detonation properties (VOD > 8582 m s-1, and DP > 31.3 GPa), outstanding thermostability (>205 °C), and high insensitivity (IS > 35 J, and FS = 360 N). These attributes are quite comparable to those of secondary benchmark explosives such as TATB, RDX, LLM-105, and FOX-7. This tuned performance evidences that the incorporation of hydrazine, nitro, and aminotetrazole into the pyrazine framework fosters robust nonbonded interactions, ultimately enhancing thermal stability and reducing sensitivity. The findings of this study not only signify that compounds 2 and 5 have excellent detonation properties and stability but also prove that the strategy of replacing amino groups with hydrazine and aminotetrazole is a practical means of developing new insensitive energetic materials.

3.
J Org Chem ; 88(18): 13178-13183, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37643426

RESUMEN

High energetic 2-(1-hydroxy-2,2-dinitrovinyl)guanidine and guanidinium dinitromethanide (GDNM) salt were synthesized in one and two steps using a simple and cost-effective methodology from commercially available inexpensive starting materials with a high yield. NMR, IR spectroscopy, elemental analysis, and differential scanning calorimetry studies were used to characterize compound 2a and GDNM salt. Single-crystal XRD, Hirshfeld surface analysis, and SEM analysis were used to study the crystal structure, hydrogen-bonding/noncovalent interactions, and morphology of the GDNM salt, respectively. The physicochemical and energetic properties of compound 2a and GDNM salt reveal their good energetic performance, specific impulse, and high mechanical insensitivity, which are better than that of propellants such as ADN and AP and close to that of the benchmark explosives such as RDX and FOX-7.

4.
J Org Chem ; 88(21): 15085-15096, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37847075

RESUMEN

In the quest to synthesize high-performing insensitive high-energy density materials (HEDMs), the main challenge is establishing an equilibrium between energy and stability. For this purpose, we explored 4-hydroxy-3,5-dinitropyrazole- and tetrazole-based energetic scaffolds connected via a N-methylene-C bridge. The hydroxy functionality between nitro groups on the pyrazole ring promotes physical stability via inter- and intramolecular hydrogen bonding and contributes to oxygen balance, supporting better energetic performance. Due to two acidic sites (OH and NH) with different reactivities, a series of monocationic and dicationic salts were synthesized, and their overall performance was compared. All compounds synthesized in this study have high physical stability with impact sensitivity >40 J and friction sensitivity >360 N. Monocationic salts were generally found to have better thermal stability with respect to their corresponding dicationic energetic salts, which showed better energetic performance. The salt formation strategy effectively improved the thermal stability of 2 (Td = 168 °C), where most energetic salts have decomposition temperatures higher than 220 °C. All of the compounds were characterized through IR, multinuclear NMR spectroscopy, high-resolution mass spectrometry (HRMS), and elemental analysis. The structure-property relationship was studied using Hirshfeld surface analysis, noncovalent interaction (NCI) analysis, and electrostatic potential studies.

5.
Inorg Chem ; 62(21): 8389-8396, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37192156

RESUMEN

Poly tetrazole-containing thermally stable and insensitive alkali metal-based 3D energetic metal-organic frameworks (EMOFs) are promising high energy density materials to balance the sensitivity, stability, and detonation performance of explosives in defense, space, and civilian applications. Herein, the self-assembly of L3- ligand with alkali metals Na(I) and K(I) was prepared at ambient conditions, introducing two new EMOFs, [Na3(L)3(H2O)6]n (1) and [K3(L)3(H2O)3]n (2). Single crystal analysis reveals that Na-MOF (1) exhibited a 3D wave-like supramolecular structure with significant hydrogen bonding among the layers, while K-MOF (2) also featured a 3D framework. Both EMOFs were thoroughly characterized by NMR, IR, PXRD, and TGA/DSC analyses. Compounds 1 and 2 show excellent thermal decomposition Td = 344 and 337 °C, respectively, compared to the presently used benchmark explosives RDX (210 °C), HMX (279 °C), and HNS (318 °C), which is attributed to structural reinforcement induced by extensive coordination. They also show remarkable detonation performance (VOD = 8500 m s-1, 7320 m s-1, DP = 26.74 GPa, 20 GPa for 1 and 2, respectively) and insensitivity toward impact and friction (IS ≥ 40 J, FS ≥ 360 N for 1; IS ≥ 40 J, FS ≥ 360 N for 2). Their excellent synthetic feasibility and energetic performance suggest that they are the perfect blend for the replacement of present benchmark explosives such as HNS, RDX, and HMX.

6.
Org Biomol Chem ; 21(32): 6604-6616, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531170

RESUMEN

A new class of heat-resistant explosives was synthesized by coupling N-methyl-3,5-dinitropyrazole with polynitrobenzene moieties through carbon-carbon bonds. Simple Pd(0)-based Suzuki cross-coupling reactions between N-methyl-4-bromo-3,5-dinitropyrazole and 4-chloro/3-hydroxy-phenylboronic acid followed by nitration, amination and oxidation lead to the formation of C-C connected penta-nitro energetic derivatives 6 and 10. Various other energetic derivatives, such as amino (5), azido (7), nitramino (8) and energetic salts (11-14), were also explored to fine-tune their properties. All the compounds were thoroughly characterized using IR, NMR [1H, 13C{1H}], differential scanning calorimetry (DSC), elemental analysis, and HRMS studies. Compounds 5, 10 and 13 were further characterized through 15N NMR, and the crystal structures of 6 and 14 were confirmed through single-crystal X-ray diffraction studies. The physicochemical and energetic properties of all the energetic compounds were explored. Most of the synthesized compounds demonstrated high thermal stability (decomposition temperature Tdec > 250 °C), among which compounds 5 and 6 showed excellent thermal stability, having decomposition temperatures above 300 °C. The excellent thermal stability, acceptable sensitivity and good energetic properties of compounds 5, 6, 10 and 13 make them promising heat-resistant explosives. Furthermore, these compounds were found to be more thermally stable than the known N-methyl-3,5-dinitropyrazole-based and C-N coupled 3,4,5-trinitrobenzene-azole-based energetic compounds.

7.
J Phys Chem A ; 127(31): 6467-6475, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500610

RESUMEN

Density functional theory (DFT) methods were used to design a series of energetic dinitro-tris(triazole) isomers by altering the triazole rings and -NO2 groups. The impact of three nitrogen atoms' position in the tris(triazole) scaffold on energy content, performance, and stability was discussed. Based on computed heats of formation and densities, the detonation properties were predicted using the thermochemical EXPLO5 (v6.06) code. Using the bond dissociation energy of the longest C-NO2 bond, the thermal stability was investigated. The mechanical sensitivities were estimated and correlated with RDX and HMX using maximum heats of detonation (Q), free void (ΔV) in the lattice of the crystalline compound, and total -NO2 group charge. Among the designed series, compounds O4, R1, R3, and R4 display high heats of formation (>450 kJ/mol), high densities (>1.92 g/cm3), good detonation performances (D > 8.76 km/s and P > 32.0 GPa), and low sensitivities. Our findings suggest that the isomeric tricyclic triazole backbone could be a promising platform for developing new high-performing and thermostable energy materials.

8.
J Phys Chem A ; 127(48): 10128-10138, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38015623

RESUMEN

Oxadiazole and triazole are extensively investigated heterocyclic scaffolds in the development of energetic materials. New energetic molecules were designed by replacing 1,2,5-oxadiazole with 2H-1,2,3-triazole in the reported conjugated macrocyclic systems to assess the influence on the energetic properties and stability. In addition, nitro groups were introduced in triazole units (N-functionalization) to improve the energetic performance. Energetic properties, including heat of formation, oxygen balance, density, detonation pressure and velocity, and impact sensitivity, were estimated for these triazole-based macrocycles. The replacement of 1,2,5-oxadiazole with 2H-1,2,3-triazole and 2-nitro-1,2,3-triazole significantly enhances the energy content, detonation performance, and noncovalent interactions. The theoretically computed energetic properties of triazole-based macrocycles reveal high positive heats of formation (1507-2761 kJ/mol), oxygen balance (-88.8 to -22.8%), high densities (1.87-1.90 g/cm3), superior detonation velocities (8.41-9.52 km/s), pressures (26.64-40.55 GPa), acceptable impact sensitivity (27-40 cm), and safety factor (51-290). The overall energetic assessment highlights triazole-based macrocycles as a potential framework that will be useful for developing advanced energetic materials.

9.
Phys Chem Chem Phys ; 20(47): 29693-29707, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30480268

RESUMEN

Developing novel energetic materials of high detonation performance and low sensitivity is one of the primary objectives related to explosive research. By employing ab initio calculations, a series of energetic ionic salts based on 5,5'-bitetrazole-1,1'-diolate (BTO) were thoroughly investigated to understand the structure-property-performance interrelationship. The physicochemical and detonation characteristics of these energetic ionic salts including structural, electronic, vibrational and performance parameters (heats of formation, detonation pressures, and detonation velocities) were discussed in detail. The strong intermolecular hydrogen bonding environment between the BTO2- anion and various cations is mainly responsible for prominent detonation performance and enhanced molecular stability. Such strong intermolecular hydrogen bonds are observed in hydrazine and hydroxylammonium cations compared to other cations. To predict an accurate band gap, electronic band structures of the studied energetic ionic salts (EIS) were calculated using the HSE06 hybrid functional and they are found to be wide band gap insulators with a bandwidth ranging from 4.33-5.05 eV. Careful inspection of various EIS revealed that the hydroxylammonium and hydrazine cations produce the highest density relative to other cations when combined with the BTO anion. The detonation characteristics of BTO2- are computed using EXPLO5 code. In particular, HA-BTO and TKX-50 exhibit high detonation pressure (38.85 and 40.23 GPa) and detonation velocities (9.94 and 9.91 km s-1), superior to those of traditional nitrogen-rich energetic materials with moderate sensitivities. These results highlight the importance of hydrogen bonding interactions in designing energetic salts for next-generation explosives, propellants, and pyrotechnics.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38598691

RESUMEN

Due to the inherent conflict between energy and safety, the construction of energetic materials or energetic metal-organic frameworks (E-MOFs) with balanced thermal stability, sensitivity, and high detonation performance is challenging for chemists worldwide. In this regard, in recent times self-assembly of energetic ligands (high nitrogen- and oxygen-containing small molecules) with alkali metals were probed as a promising strategy to build high-energy materials with excellent density, insensitivity, stability, and detonation performance. Herein, based on the nitrogen-rich N,N'-([4,4'-bi(1,2,4-triazole)]-3,3'-dial)dinitramide (H2BDNBT) energetic ligand, two new environmentally benign E-MOFs including potassium [K2BDNBT]n (K-MOF) and sodium [Na2BDNBT]n (Na-MOF) have been introduced and characterized by NMR, IR, TGA-DSC, ICP-MS, PXRD, elemental analyses, and SCXRD. Interestingly, Na-MOF and K-MOF demonstrate solvent-free 3D dense frameworks having crystal densities of 2.16 and 2.14 g cm-3, respectively. Both the E-MOFs show high detonation velocity (VOD) of 8557-9724 m/s, detonation pressure (DP) of 30.41-36.97 GPa, positive heat of formation of 122.52-242.25 kJ mol-1, and insensitivity to mechanical stimuli such as impact and friction (IS = 30-40 J, FS > 360 N). Among them, Na-MOF has a detonation velocity (9724 m/s) superior to that of conventional explosives. Additionally, both the E-MOFs are highly heat-resistant, having higher decomposition (319 °C for K-MOF and 293 °C for Na-MOF) than the traditional explosives RDX (210 °C), HMX (279 °C), and CL-20 (221 °C). This stability is ascribed to the extensive structure and strong covalent interactions between BDNBT2- and K(I)/Na(I) ions. To the best of our knowledge, for the first time, we report dinitramino-based E-MOFs as highly stable secondary explosives, and Na-MOF may serve as a promising next-generation high-energy-density material for the replacement of presently used secondary thermally stable energetic materials such as RDX, HNS, HMX, and CL-20.

11.
Chem Asian J ; 19(14): e202400409, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706415

RESUMEN

Heat-resistant explosives play a vital role in indispensable applications. For this, we have synthesized a novel, three-dimensional, solvent-free energetic metal-organic framework (EMOF) potassium 3,5-dinitro-6-oxo-1,6-dihydropyrazin-2-olate (KDNODP) straightforwardly. The synthesized EMOF was characterized through IR, NMR spectroscopy, elemental analysis, and differential scanning calorimetry studies. Furthermore, single-crystal X-ray diffraction provided a complete description of KDNODP. It exhibits a three-dimensional EMOF structure with remarkably balanced properties such as high density (2.11 g cm-3), excellent thermal stability (291 °C), good detonation performance (8127 m s-1 and 26.94 GPa) and low mechanical sensitivity (IS=35 J; FS=360 N) than the commonly used heat-resistant explosives HNS (density=1.74 g cm-3; VOD=7164 m s-1, DP=21.65 GPa, IS=5 J) as well as the similar reported energetic potassium MOFs. To gain insights into the packing and intermolecular interactions, the Hirshfeld surface and a 2D fingerprint analysis were examined. Additionally, scanning electron microscopy was used to investigate the particle size and morphological characteristics of KDNODP. These outcomes highlight a successful method for creating 3D EMOF based on a six-membered heterocycle as a potential heat-resistant energetic material.

12.
Chem Commun (Camb) ; 60(12): 1646-1649, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38236126

RESUMEN

A series of nitrogen-rich fused energetic materials were synthesized from commercially available inexpensive starting materials and fully characterized using 1H and 13C NMR, IR spectroscopy, elemental analysis, and DSC. The structure of zwitterionic compound 2 was supported by SCXRD data. Among all, 3 and 4 possess excellent detonation velocity (8956 and 9163 m s-1) and are insensitive towards friction (>360 N) and impact (10 J), having moderate to excellent thermal stability (171-262 °C). It is worth mentioning that the zwitterionic fused pyrazolo-triazole compound 2 and its energetic salts offer remarkable performance as new-generation thermally stable energetic materials.

13.
J Mol Model ; 30(4): 98, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461222

RESUMEN

CONTEXT: Various 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine (A) based nitrogen-rich energetic salts were designed and their properties explored. All energetic salts possess relatively high nitrogen content (> 48%), positive heats of formation (> 429 kJ/mol) and stability owing to a significant contribution from fused backbone. The cationic component shows a very high heat of formation (2516 kJ/mol); therefore, it is highly suitable for enthalpy enhancement in new energetic salts. The cation was paired with the energetic anions nitrate (NO3-), perchlorate (ClO4-), dinitromethanide (CH(NO2)2-), trinitromethanide (C(NO2)3-), nitroamide (NHNO2-), and dinitroamide (N(NO2)2-) to improve oxygen balance and detonation performance. Designed salts show moderate detonation velocities (7.9-8.7 km/s) and pressures (23.8 - 33.1 GPa). The distribution of frontier molecular orbitals, molecular electrostatic surface potentials, QTAIM topological properties, and noncovalent interactions of designed salts were simulated to understand the electronic structures, charge distribution in molecules, hydrogen bonding, and other nonbond interactions. The predicted safety factor (SF) and impact sensitivity (H50) of designed salts suggest their insensitivity to mechanical stimuli. This work explored the 7H,7'H-[6,6'-bi[1,2,4]triazolo[4,3-b][1,2,4]triazole]-3,3',7,7'-tetramine as a suitable cationic component which could be promising and serve exemplarily in energetic materials. METHODS: The optimization and energy calculations of all the designed compounds were carried out at the B3LYP/6-311 + + G(d,p) and M06-2X/def2-TZVPP levels, utilizing the Gaussian software package. The molecular surface electrostatic potential, quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and noncovalent interaction (NCI) analysis were performed by employing Multiwfn software. The EXPLO5 (v 7.01) thermochemical code and PILEM web application were used to predict the detonation properties.

14.
Org Lett ; 26(22): 4788-4792, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38809597

RESUMEN

gem-Dinitro methyl based high-energy-density material 5-(dinitromethylene)-4,5-dihydro-1H-1,2,4-triazole (2) and its hydroxylamine salt (4) were synthesized for the first time in a single step and characterized. Further, the structure of 2 was confirmed by single-crystal X-ray diffraction (SCXRD) studies. Interestengly, both the compounds show excellent density (> 1.83 g cm-3), detonation velocity (> 8700 m s-1), pressure (> 30 GPa) and are insensitive toward mechanical stimuli such as impact and friction sensitivity. Considering their synthetic fesibility and balanced energetic performance, compounds 2 and 4 show future prospects as potential next-generation energetic materials for the replacenent of many presently used benchmark high energy density materials such as RDX, FOX-7 and highly insensitive H-FOX.

15.
Org Lett ; 26(28): 6006-6011, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38975866

RESUMEN

A novel fused-ring compound, 5-azido-6-oxo-6,7-dihydro-[1,2,5]oxadiazolo[3,4-b]pyrazine 1-oxide (3a), was synthesized for the first time with simple two-step process and characterized using various spectroscopic techniques such NMR, IR, EA and HRMS. Two polymorphs (α-3a and ß-3a) identified by SCXRD differ in crystal packing and noncovalent interactions, demonstrating high density, substantial heat of formation, and superior detonation properties with reduced mechanical sensitivity compared to TNT, TATB, and close to RDX, suggesting their potential as environmentally friendly high energy density materials.

16.
Dalton Trans ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224089

RESUMEN

A trifluoromethyl group substituted C-C bonded nitrogen rich energetic material 3-(3-nitro-1H-pyrazol-4-yl)-5-(trifluoromethyl)-1,2,4-oxadiazole (4), its hydroxyl amine (5) and 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium (6) salts and hydrazinium 5-(3-nitro-1H-pyrazol-4-yl)-3-(trifluoromethyl)-1,2,4-triazol-1-ide (7) were synthesized and fully characterized using infrared spectroscopy (IR), multinuclear magnetic resonance (NMR) spectroscopy (1H, 13C, and 19F), high-resolution mass spectrometry (HRMS), elemental analysis (EA) and differential scanning calorimetry (DSC) studies. Furthermore, compounds 4 and 7 were confirmed using single-crystal X-ray diffraction studies (SC-XRD). All compounds possess good density (1.70-1.80 g cm-3), detonation velocity (6432-7144 m s-1), pressure (16.38-20.31 GPa), and thermal stability (>170 °C). They are insensitive towards mechanical stimuli, impact (IS > 35 J) and friction (FS > 288 N). Overall, due to their balanced performance, these compounds can be a better replacement for presently used explosives such as trinitrotoluene (TNT).

17.
ChemMedChem ; : e202400451, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155530

RESUMEN

Herein, we report design, synthesis and characterization of a new library of 7-azaindole N-ethyl linked 1,2,3-triazoles containing ethylene as a spacer unit, and evaluation of all the synthesized compounds for their antimicrobial properties. Antibacterial potential was checked against two Gram positive (B. subtilis and S. aureus) and two Gram negative (E. coli and P. aeruginosa) bacterial strains while antifungal potential was assayed against two fungal strains (C. albicans and A. niger). All the tested compounds showed satisfactory antibacterial potency in comparison to reference drug ciprofloxacin with MIC values ranging from 0.0108 to 0.0432 µmol/mL. Interestingly, except two, all the target compounds showed better antifungal property as compared to the reference drug fluconazole with MIC values less than 0.0408 µmol/mL. One of the compounds exhibited two-fold better antifungal potential in comparison to fluconazole. Furthermore, in-silico ADMET and DFT studies reported drug likeness behavior and chemical reactivity parameters, respectively. The cytotoxicity results on substrate azide 3 and most potent 1,2,3-triazoles (5d and 5l) were found to be non-toxic.

18.
Chemistry ; 19(2): 509-18, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23184697

RESUMEN

Various thermally stable energetic polynitro-aryl-1,2,3-triazoles have been synthesized through Cu-catalyzed [3+2] cycloaddition reactions between their corresponding azides and alkynes, followed by nitration. These compounds were characterized by analytical and spectroscopic methods and the solid-state structures of most of these compounds have been determined by using X-ray diffraction techniques. Most of the polynitro-bearing triazole derivatives decomposed within the range 142-319 °C and their heats of formation and crystal densities were determined from computational studies. By using the Kamlet-Jacobs empirical relation, their detonation velocities and pressures were calculated from their heats of formation and crystal densities. Most of these newly synthesized compounds exhibited high positive heats of formation, good thermal stabilities, reasonable densities, and acceptable detonation properties that were comparable to those of TNT.

19.
J Chem Phys ; 138(17): 174701, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23656146

RESUMEN

High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P2(1)/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

20.
Dalton Trans ; 52(3): 747-753, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36562432

RESUMEN

Various thermally stable energetic materials with high nitrogen content, low sensitivity and better detonation performance were synthesized. The versatile functionalization of 1,2,4-triazine involving the introduction of oxadiazole and tetrazole is discussed. All the compounds were fully characterized using IR, multinuclear NMR spectroscopy, elemental analysis, and high-resolution mass spectrometry. Compounds 2, 3, 9 and 12 were further verified using single-crystal X-ray analysis. Compound 9 can be considered a melt-cast explosive due to its lower onset melting temperature (112 °C). The detonation velocity, pressure, density, and heat of formation of all the synthesized compounds range between 7056 and 8212 m s-1, 17.57 and 23.78 GPa, 1.70 and 1.81 g cm-1, and 43 and 644 kJ mol-1, respectively. Due to the high nitrogen percentage (53 to >72%), these molecules can be used in car airbag applications. Due to the high thermal stability (>220 °C) and lower sensitivity, these compounds can be potentially used as high-performing thermally stable secondary energetic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA