Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 286(4): 2517-25, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21078671

RESUMEN

Gain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD. By quantitative PCR, the first MyoD up-regulated transcripts were the premyogenic mesoderm factors Meox1, Pax7, Six1, and Eya2 on day 4 of differentiation. Subsequently, the myoblast markers myogenin, MEF2C, and Myf5 were up-regulated, leading to skeletal myogenesis. These results were corroborated by Western blot analysis, showing up-regulation of Pax3, Six1, and MEF2C proteins, prior to myogenin protein expression. To determine at what stage a dominant-negative MyoD/EnR mutant could inhibit myogenesis, stable cell lines were created and examined. Interestingly, the premyogenic mesoderm factors, Meox1, Pax3/7, Six1, Eya2, and Foxc1, were down-regulated, and as expected, skeletal myogenesis was abolished. Finally, to identify direct targets of MyoD in this system, chromatin immunoprecipitation experiments were performed. MyoD was observed associated with regulatory regions of Meox1, Pax3/7, Six1, Eya2, and myogenin genes. Taken together, MyoD directs stem cells into the skeletal muscle lineage by binding and activating the expression of premyogenic mesoderm genes, prior to activating myoblast genes.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular/fisiología , Proteínas de Homeodominio/biosíntesis , Desarrollo de Músculos/fisiología , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Células Madre/metabolismo , Regulación hacia Arriba/fisiología , Animales , Antígenos de Diferenciación/genética , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Proteínas de Homeodominio/genética , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mutación , Proteína MioD/genética , Mioblastos Esqueléticos/citología , Células Madre/citología
2.
Am J Med Genet B Neuropsychiatr Genet ; 159B(2): 210-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213695

RESUMEN

The overwhelming majority of Rett syndrome cases are caused by mutations in the gene MECP2. MECP2 has two isoforms, termed MECP2_e1 and MECP2_e2, which differ in their N-terminal amino acid sequences. A growing body of evidence has indicated that MECP2_e1 may be the etiologically relevant isoform in Rett Syndrome based on its expression profile in the brain and because, strikingly, no mutations have been discovered that affect MECP2_e2 exclusively. In this study we sought to characterize four classical Rett patients with mutations that putatively affect only the MECP2_e1 isoform. Our hypothesis was that the classical Rett phenotype seen here is the result of disrupted MECP2_e1 expression, but with MECP2_e2 expression unaltered. We used quantitative reverse transcriptase PCR to assay mRNA expression for each isoform independently, and used cytospinning methods to assay total MECP2 in peripheral blood lymphocytes (PBL). In the two Rett patients with identical 11 bp deletions within the coding portion of exon 1, MECP2_e2 levels were unaffected, whilst a significant reduction of MECP2_e1 levels was detected. In two Rett patients harboring mutations in the exon 1 start codon, MECP2_e1 and MECP2_e2 mRNA amounts were unaffected. In summary, we have shown that patients with exon 1 mutations transcribe normal levels of MECP2_e2 mRNA, and most PBL are positive for MeCP2 protein, despite them theoretically being unable to produce the MECP2_e1 isoform, and yet still exhibit the classical RTT phenotype. Altogether, our work further supports our hypothesis that MECP2_e1 is the predominant isoform involved in the neuropathology of Rett syndrome.


Asunto(s)
Exones/genética , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Síndrome de Rett/genética , Transcripción Genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Fenotipo , Pronóstico , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inactivación del Cromosoma X , Adulto Joven
3.
Am J Med Genet B Neuropsychiatr Genet ; 150B(6): 817-26, 2009 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-19086034

RESUMEN

We have recently reported the identification of a de novo balanced translocation t(5;18)(q33.1;q12.1) in a boy with autism. Here we discuss the identification of the breakpoints on chromosomes 5 and 18, and subsequent genomic and candidate gene analyses. The 18q breakpoint lies between desmocollin genes DSC1 and DSC2. The chromosome 5 breakpoint lies at the 3' end of the SH3TC2 gene and distal to beta-adrenergic receptor gene ADRB2 and serotonin receptor gene HTR4. We hypothesized that the transcription of one (or more) of these genes is affected by the translocation by position effect. Looking at allele-specific gene expression for the genes at the 5q locus, we were able to determine that ADRB2 is expressed from both the normal and derivative alleles. Due to the lack of expression in available tissues or lack of available informative transcribed SNPs, we were unable to exclude the involvement of SH3TC2 and HTR4 due to position effect. However, we determined that both DSC1 and DSC2 are only transcribed from the normal chromosome 18 in lymphocytes from the proband. This monoallelic expression of DSC2 may put the patient at risk for arrythmogenic right ventricular cardiomyopathy. Desmocollin genes encode cell-adhesion molecules, and are also highly expressed in brain regions, and thus may also be important for normal neuronal functioning. While a role for SH3TC2, ADRB2, and HTR4 as putative candidate genes for autism cannot be discounted, a role for the desmocollin genes at the 18q breakpoint should also be considered.


Asunto(s)
Trastorno Autístico/genética , Rotura Cromosómica , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 5/genética , Translocación Genética , Secuencia de Bases , Análisis Mutacional de ADN , Desmocolinas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Datos de Secuencia Molecular , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Proteínas/genética , Receptores Adrenérgicos beta 2/genética , Receptores de Serotonina/genética
4.
PLoS One ; 9(4): e91742, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699272

RESUMEN

Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2(tm1.1Bird)) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼ 800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼ 230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/fisiología , Neuroblastoma/genética , Neuronas/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Humanos , Ratones , Ratones Noqueados , Neuroblastoma/patología , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Sci Transl Med ; 2(49): 49ra68, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20844286

RESUMEN

Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three families with intellectual disability. A 167-kilobase microdeletion spanning exon 1 was found in two brothers, one with ASD and the other with a learning disability and ASD features; a 90-kilobase microdeletion spanning the entire gene was found in three males with intellectual disability in a second family. In 900 probands with ASD and 208 male probands with intellectual disability, we identified seven different missense changes (in eight male probands) that were inherited from unaffected mothers and not found in controls. Two of the ASD individuals with missense changes also carried a de novo deletion at another ASD susceptibility locus (DPYD and DPP6), suggesting complex genetic contributions. In additional males with ASD, we identified deletions in the 5' flanking region of PTCHD1 that disrupted a complex noncoding RNA and potential regulatory elements; equivalent changes were not found in male control individuals. Thus, our systematic screen of PTCHD1 and its 5' flanking regions suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.


Asunto(s)
Trastorno Autístico/genética , Genes Ligados a X/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Humanos , Hibridación in Situ , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Canales de Potasio/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Biol Chem ; 280(22): 21022-8, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15793308

RESUMEN

Sonic Hedgehog (Shh) is a critical signaling factor for a variety of developmental pathways during embryogenesis, including the specification of left-right asymmetry in the heart. Mice that lack Hedgehog signaling show a delay in the induction of cardiomyogenesis, as indicated by a delayed expression of Nkx2-5. To further examine a role for Shh in cardiomyogenesis, clonal populations of P19 cells that stably express Shh, termed P19(Shh) cells, were isolated. In monolayer P19(Shh) cultures the Shh pathway was functional as shown by the up-regulation of Ptc1 and Gli1 expression, but no cardiac muscle markers were activated. However, Shh expression induced cardiomyogenesis following cellular aggregation, resulting in the expression of factors expressed in cardiac muscle including GATA-4, MEF2C, and Nkx2-5. Furthermore, aggregated P19 cell lines expressing Gli2 or Meox1 also up-regulated the expression of cardiac muscle factors, leading to cardiomyogenesis. Meox1 up-regulated the expression of Gli1 and Gli2 and, thus, can modify the Shh signaling pathway. Finally, Shh, Gli2, and Meox1 all up-regulated BMP-4 expression, implying that activation of the Hedgehog pathway can regulate bone morphogenetic protein signals. Taken together, we propose a model in which Shh, functioning via Gli1/2, can specify mesodermal cells into the cardiac muscle lineage.


Asunto(s)
Transactivadores/fisiología , Actinas/metabolismo , Animales , Northern Blotting , Diferenciación Celular , Línea Celular , Linaje de la Célula , Cartilla de ADN/química , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática , Factor de Transcripción GATA4 , Proteínas Hedgehog , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel , Factores de Transcripción MEF2 , Mesodermo/metabolismo , Ratones , Microscopía Fluorescente , Modelos Biológicos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
7.
J Biol Chem ; 279(23): 23874-81, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15039437

RESUMEN

Gli2 and Meox1 are transcription factors that are expressed in the developing somite and play roles in the commitment of cells to the skeletal muscle lineage. To further define their roles in regulating myogenesis, the function of wild type and dominant-negative forms of Gli2 and Meox1 were examined in the context of differentiating P19 stem cells. We found that Gli2 overexpression up-regulated transcript levels of Meox1 and, conversely, Meox1 overexpression resulted in the upregulation of Gli2 transcripts. Furthermore, dominant-negative forms of either Meox1 or Gli2 disrupted the ability of P19 cells to commit to the muscle lineage and to properly express either Gli2 or Meox1, respectively. Finally, Pax3 transcripts were induced by Gli2 overexpression and lost in the presence of either mutants Meox1 or Gli2. Taken together, these results support the existence of a regulatory loop between Gli2, Meox1, and Pax3 that is essential for specification of mesodermal cells into the muscle lineage.


Asunto(s)
Proteínas de Homeodominio/fisiología , Músculo Esquelético/embriología , Transactivadores , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Northern Blotting , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Linaje de la Célula , Células Cultivadas , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Genes Dominantes , Proteínas de Homeodominio/genética , Factores de Transcripción de Tipo Kruppel , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C3H , Microscopía Fluorescente , Modelos Biológicos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mutación , Factor 5 Regulador Miogénico , Miogenina/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box , Fenotipo , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Regulación hacia Arriba , Proteína Gli2 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA