Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 76(5): 1345-1359, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35253915

RESUMEN

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Humanos , Animales , Receptor Toll-Like 2 , Factores de Crecimiento Nervioso/metabolismo , Receptor Toll-Like 3 , Receptor Toll-Like 6 , Proteínas Supresoras de Tumor/metabolismo , Inflamación/metabolismo , Antiinflamatorios , ARN Mensajero , Aminoácidos , Receptores de Netrina
2.
Neuroendocrinology ; 111(10): 951-964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33099543

RESUMEN

INTRODUCTION: Gastroenteropancreatic neuroendocrine carcinomas (GEPNEC) are characterized by a heterogeneous molecular profile and a poor prognosis. Circulating tumour DNA (ctDNA) analysis may be useful for NEC management. This study aimed at describing ctDNA mutations, to assess their predictive value for response to chemotherapies, and their change according to disease progression. METHODS: The CIRCAN-NEC study included patients with GEPNEC or NEC from an unknown primary, scheduled to begin first- or second-line chemotherapy. Blood samples were collected prior to chemotherapy initiation, at first evaluation, and during disease progression. ctDNA was sequenced by next-generation sequencing (NGS). Molecular response was defined as a decrease of at least 30% of the mutant allele fraction. RESULTS: All 24 patients included received platinum-etoposide first-line chemotherapy; 19 received a FOLFIRI-based post-first-line regimen. Twenty-two patients had at least one driver mutation: TP53 (n = 21), RB1 (n = 2), KRAS (n = 4), and BRAF (n = 3). Ten (42%) had an "adenocarcinoma-like" profile. Five of 6 patients with matching ctDNA/tissue NGS harboured at least one concordant mutation (44% concordance at the gene level). The concordance rate between ctDNA mutation/immunohistochemistry profile was 64% (7/11) for TP53/p53+ and 14% (1/7) for RB1/pRb-. In this pilot study including few patients by subgroups, patients with KRAS (HR = 3.60, 95% CI [1.06-12.04]) and BRAF (HR = 4.25, 95% CI [1.11-16.40]) mutations had shorter progression-free survival (PFS) under platinum-etoposide, while the 2 patients with RB1 mutations had shorter PFS under FOLFIRI-based chemotherapy. Twenty-eight periods of treatment were assessed: 10 patients had a molecular response (7/10 had a morphological response), which was associated with longer PFS (HR = 0.37, 95% CI [0.15; 0.91]). CONCLUSION: This pilot study shows a high sensitivity of ctDNA assessment, which is encouraging for the future management of GEPNEC (tumour molecular diagnosis and evaluation of disease progression).


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino/diagnóstico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/secundario , ADN Tumoral Circulante/genética , Neoplasias Intestinales/patología , Neoplasias Primarias Desconocidas/patología , Tumores Neuroendocrinos/patología , Evaluación de Resultado en la Atención de Salud , Neoplasias Pancreáticas/patología , Neoplasias Gástricas/patología , Adulto , Anciano , Antineoplásicos/administración & dosificación , Carcinoma Neuroendocrino/tratamiento farmacológico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
3.
Neuroendocrinology ; 111(8): 786-793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32998140

RESUMEN

INTRODUCTION: Small-intestinal neuroendocrine tumors (SI-NET) are situated preferentially within the ileum. The aim was to describe a potential difference in location between unifocal and multiple ileal-NET. PATIENTS AND METHODS: Between December 2010 and December 2019, all consecutive patients who underwent resection in our European Neuroendocrine Tumor Society Center of Excellence, of at least 1 non-duodenal SI-NET, were retrospectively included. The main objective was to prove that multiple ileal-NET were mostly located on the left side of the superior mesenteric artery (SMA) axis (defined as 40 cm from the ileocecal valve), and unifocal ones on the right side. RESULTS: Ninety-four patients were included, 6 with unifocal jejunal-NET located 35 cm (range, 10-60) from the duodenojejunal angle (DJA), 44 (47%) with unifocal ileal-NET and 44 (47%) with multiple ileal-NET. The median number of tumors in multiple ileal-NET was 7 (range, 2-95), within a median small bowel segment of 105 cm (10-240). The median length between the proximal tumor and the DJA was 428 cm (300-635) and 540 cm (350-725) for the distal one; 40 (91%) of them were located on the left side of the SMA axis. In contrast, unifocal ileal-NET were located at a median distance of 577 cm (305-820) from the DJA (p < 0.001, compared to multiple ileal-NET); 30 (68%) of them were on the right side of the SMA axis (p < 0.001). CONCLUSION: Multiple ileal-NET are mostly located on the left side of the SMA axis. Further studies are warranted to explore the embryological origin of unifocal versus multiple ileal-NET.


Asunto(s)
Neoplasias del Íleon/patología , Neoplasias de Células Germinales y Embrionarias/patología , Tumores Neuroendocrinos/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
5.
J Med Internet Res ; 23(6): e28253, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33900934

RESUMEN

BACKGROUND: Before the advent of an effective vaccine, nonpharmaceutical interventions, such as mask-wearing, social distancing, and lockdowns, have been the primary measures to combat the COVID-19 pandemic. Such measures are highly effective when there is high population-wide adherence, which requires information on current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. OBJECTIVE: Here we analyzed online news media coverage of COVID-19. We quantified the total volume of COVID-19 articles, their sentiment polarization, and leading subtopics to act as a reference to inform future communication strategies. METHODS: We collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available online at SciRide). Using topic detection, we identified COVID-19-related content to quantify the proportion of total coverage the pandemic received in 2020. The sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 coverage to reveal the leading themes in pandemic reporting and their respective emotional polarizations. RESULTS: We found that COVID-19 coverage accounted for approximately 25.3% of all front-page online news articles between January and October 2020. Sentiment analysis of English-language sources revealed that overall COVID-19 coverage was not exclusively negatively polarized, suggesting wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-language articles) can be classified as highly negatively polarized, citing issues such as death, fear, or crisis. CONCLUSIONS: The goal of COVID-19 public health communication is to increase understanding of distancing rules and to maximize the impact of governmental policy. The extent to which the quantity and quality of information from different communication channels (eg, social media, government pages, and news) influence public understanding of public health measures remains to be established. Here we conclude that a quarter of all reporting in 2020 covered COVID-19, which is indicative of information overload. In this capacity, our data and analysis form a quantitative basis for informing health communication strategies along traditional news media channels to minimize the risks of COVID-19 while vaccination is rolled out.


Asunto(s)
COVID-19/epidemiología , Minería de Datos/métodos , Medios de Comunicación de Masas/estadística & datos numéricos , Salud Pública/métodos , Medios de Comunicación Sociales/estadística & datos numéricos , Recursos en Salud , Humanos , Pandemias , SARS-CoV-2/aislamiento & purificación
6.
PLoS Genet ; 13(9): e1007024, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28945745

RESUMEN

The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.


Asunto(s)
Necrosis/genética , Espermatogénesis/genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Caspasa 9/genética , Caspasas/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Germinativas/crecimiento & desarrollo , Células Germinativas/patología , Homeostasis/genética , Humanos , Hiperplasia/genética , Hiperplasia/patología , Masculino , Ratones , Necrosis/patología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
7.
PLoS Biol ; 11(8): e1001623, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940460

RESUMEN

The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Moléculas de Adhesión Celular/genética , Línea Celular , Línea Celular Tumoral , Femenino , Proteínas Hedgehog/genética , Humanos , Masculino , Ratones , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética
8.
Adv Mater ; 36(16): e2311437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38174785

RESUMEN

The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Compuestos Organometálicos , Humanos , Complejos de Coordinación/uso terapéutico , Compuestos Organometálicos/química , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
9.
Biomater Adv ; 161: 213881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749213

RESUMEN

Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.


Asunto(s)
Docetaxel , Nanopartículas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Femenino , Nanopartículas/química , Línea Celular Tumoral , Ratones , Docetaxel/farmacología , Docetaxel/uso terapéutico , Docetaxel/administración & dosificación , Humanos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico
10.
Endocr Relat Cancer ; 31(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642579

RESUMEN

Neuropilin 2 (NRP2), a transmembrane non-tyrosine kinase receptor, has been described as a potential critical player in the tumourigenesis of several solid cancers and particularly in neuroendocrine neoplasms (NENs). A soluble form of NRP2 (sNRP2) has been previously described and corresponds to a truncated splice isoform. Its prognostic value has never been studied in NEN. NRP2 expression was studied by immunochemistry on tissue microarrays (n = 437) and on circulating tumour cells (CTCs, n = 5 patients with neuroendocrine carcinoma, NEC). We described the levels of sNRP2 in 229 patients with NEN using the ELISA method to identify the factors associated with sNRP2 levels and to evaluate its prognostic role; 90 blood donors represented the healthy control group. NRP2 was found in 97% of neuroendocrine tumours (396/410) and in 74% of NEC (20/27). NRP2 was also expressed in CTC of all the studied patients. The receiver operating characteristic (ROC) analysis showed that sNRP2 had a weak capacity to discriminate between NEN patients and healthy controls (area under curve (AUC) = 0.601, P = 0.053). Abnormal sNRP2 levels were associated with inflammatory syndrome, bone and peritoneal metastases, and abnormal chromogranin A levels. Patients with high sNRP2 levels (sNRP2Q3-Q4) had significantly poorer overall survival in multivariate analysis (HR 0.16, 95% CI (0.04-0.67), P = 0.015). In conclusion, the present study found that sNRP2 and NRP2 could represent a new prognostic biomarker and a therapeutic target, respectively, particularly in aggressive NEN.


Asunto(s)
Biomarcadores de Tumor , Tumores Neuroendocrinos , Neuropilina-2 , Humanos , Femenino , Neuropilina-2/metabolismo , Neuropilina-2/genética , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/sangre , Anciano , Adulto , Biomarcadores de Tumor/metabolismo , Pronóstico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Anciano de 80 o más Años , Adulto Joven
11.
Elife ; 122024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023520

RESUMEN

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Asunto(s)
Carcinoma Epitelial de Ovario , Supervivencia Celular , Netrinas , Neoplasias Ováricas , Transducción de Señal , Humanos , Femenino , Animales , Línea Celular Tumoral , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Ratones , Netrina-1/metabolismo , Netrina-1/genética , Proliferación Celular , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
12.
Sci Adv ; 10(7): eadi1736, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354248

RESUMEN

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Mama , Genes ras , Transducción de Señal , Senescencia Celular/genética , Microambiente Tumoral
13.
Int J Hyperthermia ; 29(5): 409-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23697380

RESUMEN

PURPOSE: The recent discoveries in the field of human small heat shock proteins (sHSPs) clearly point to the important roles played by these adenosine triphosphate (ATP)-independent chaperones in the regulation of a large spectrum of vital cellular processes and in pathological diseases. These proteins are therefore considered as very attractive therapeutic targets. AIMS: To understand the functions of the stress-inducible members of the sHSP family, HspB1, HspB5 and HspB8, and be able to therapeutically modulate their activities, researchers are faced with the complex oligomerisation and phosphorylation properties of these proteins and with their ability to interact with each other and with specific protein targets. Here, we have integrated, in a functionally orientated way, the up-to-date literature data concerning HspB1, HspB5 and HspB8 protein interactions which reflect their numerous crucial cellular functions. We also present data supporting the idea that specific phospho-oligomeric domains of HspB1 are involved in the interaction with particular client proteins. CONCLUSIONS: More information concerning the interactions between client protein targets and sHSPs or the multiple combinatorial chimeric oligomeric complexes formed by different sHSPs are urgently required to elaborate a comprehensive sHSPs protein interactome and propose efficient and pathology-specific therapeutic approaches.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Animales , Humanos , Chaperonas Moleculares , Transducción de Señal
14.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36876343

RESUMEN

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Asunto(s)
Neoplasias , Radioinmunoterapia , Animales , Ratones , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Netrina-1/metabolismo
15.
Mol Oncol ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37452637

RESUMEN

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.

16.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633969

RESUMEN

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

17.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883457

RESUMEN

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Asunto(s)
Caenorhabditis elegans , Neoplasias , Animales , Apoptosis , Muerte Celular , Humanos , Necrosis
18.
Exp Cell Res ; 316(9): 1535-52, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20233592

RESUMEN

Human HspB1 (also denoted Hsp27) is an oligomeric anti-apoptotic protein that has tumorigenic and metastatic roles. To approach the structural organizations of HspB1 that are active in response to apoptosis inducers acting through different pathways, we have analyzed the relative protective efficiency induced by this protein as well its localization, oligomerization and phosphorylation. HeLa cells, that constitutively express high levels of HspB1 were treated with either etoposide, Fas agonist antibody, staurosporine or cytochalasin D. Variability in HspB1 efficiency to interfere with the different apoptotic transduction pathways induced by these agents were detected. Moreover, inducer-specific dynamic changes in HspB1 localization, native size and phosphorylation were observed, that differed from those observed after heat shock. Etoposide and Fas treatments gradually shifted HspB1 towards large but differently phosphorylated oligomeric structures. In contrast, staurosporine and cytochalasin D induced the rapid but transient formation of small oligomers before large structures were formed. These events correlated with inducer-specific phosphorylations of HspB1. Of interest, the formation of small oligomers in response to staurosporine and cytochalasin D was time correlated with the rapid disruption of F-actin. The subsequent, or gradual in the case of etoposide and Fas, formation of large oligomeric structures was a later event concomitant with the early phase of caspase activation. These observations support the hypothesis that HspB1 has the ability, through specific changes in its structural organization, to adapt and interfere at several levels with challenges triggered by different signal transduction pathways upstream of the execution phase of apoptosis.


Asunto(s)
Apoptosis/fisiología , Proteínas de Choque Térmico HSP27/metabolismo , Transducción de Señal , Actinas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Western Blotting , Caspasa 3/metabolismo , Citocalasina D/farmacología , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Etopósido/farmacología , Técnica del Anticuerpo Fluorescente , Células HeLa , Proteínas de Choque Térmico , Respuesta al Choque Térmico , Humanos , Mitocondrias/efectos de los fármacos , Chaperonas Moleculares , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosforilación/efectos de los fármacos , Estaurosporina/farmacología , Receptor fas/metabolismo
19.
Endocr Oncol ; 1(1): K1-K6, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37435182

RESUMEN

Summary: We report a case of metastatic pancreatic neuroendocrine carcinoma associated with paraneoplastic Cushing's syndrome, successively treated with five lines of treatment (platin-etoposide, LV5FU2-dacarbazine, FOLFIRINOX, pembrolizumab, and paclitaxel) and anti-secretory treatment. Circulating-free DNA (cfDNA) was analysed at each morphological evaluation starting from the second-line treatment. cfDNA changes were well correlated with the disease course, and cfDNA may be used as a predictive marker and/or as an early marker of response. In addition, the absolute count of atypical cells was elevated upon disease progression. Learning points: cfDNA changes were well correlated with the Cushing's syndrome course and with the tumour burden changes assessed by laboratory markers and by RECIST criteria.cfDNA analysis was used to determine the pharmacogenetic patterns of the present patient.An elevated number of atypical circulating cells was noticed upon disease progression.

20.
EMBO Mol Med ; 13(4): e12878, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33719214

RESUMEN

The navigation cue netrin-1 is well-documented for its key role in cancer development and represents a promising therapeutic target currently under clinical investigation. Phase 1 and 2 clinical trials are ongoing with NP137, a humanized monoclonal antibody against netrin-1. Interestingly, the epitope recognized by NP137 in netrin-1 shares 90% homology with its counterpart in netrin-3, the closest member to netrin-1 in humans, for which little is known in the field of cancer. Here, we unveiled that netrin-3 appears to be expressed specifically in human neuroblastoma (NB) and small cell lung cancer (SCLC), two subtypes of neuroectodermal/neuroendocrine lineages. Netrin-3 and netrin-1 expression are mutually exclusive, and the former is driven by the MYCN oncogene in NB, and the ASCL-1 or NeuroD1 transcription factors in SCLC. Netrin-3 expression is correlated with disease stage, aggressiveness, and overall survival in NB. Mechanistically, we confirmed the high affinity of netrin-3 for netrin-1 receptors and we demonstrated that netrin-3 genetic silencing or interference using NP137, delayed tumor engraftment, and reduced tumor growth in animal models. Altogether, these data support the targeting of netrin-3 in NB and SCLC.


Asunto(s)
Neoplasias Pulmonares , Neuroblastoma , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Netrina-1 , Netrinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA