Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(27): 6952-6957, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915073

RESUMEN

The phase diagram of water at extreme conditions plays a critical role in Earth and planetary science, yet remains poorly understood. Here we report a first-principles investigation of the liquid at high temperature, between 11 GPa and 20 GPa-a region where numerous controversial results have been reported over the past three decades. Our results are consistent with the recent estimates of the water melting line below 1,000 K and show that on the 1,000-K isotherm the liquid is rapidly dissociating and recombining through a bimolecular mechanism. We found that short-lived ionic species act as charge carriers, giving rise to an ionic conductivity that at 11 GPa and 20 GPa is six and seven orders of magnitude larger, respectively, than at ambient conditions. Conductivity calculations were performed entirely from first principles, with no a priori assumptions on the nature of charge carriers. Despite frequent dissociative events, we observed that hydrogen bonding persists at high pressure, up to at least 20 GPa. Our computed Raman spectra, which are in excellent agreement with experiment, show no distinctive signatures of the hydronium and hydroxide ions present in our simulations. Instead, we found that infrared spectra are sensitive probes of molecular dissociation, exhibiting a broad band below the OH stretching mode ascribable to vibrations of complex ions.

2.
Nano Lett ; 19(6): 3912-3917, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31145624

RESUMEN

We present an analytical model to describe the stability of arbitrary semiconducting nanoparticle (NP) superlattices as a function of the dipole and polarizability of their constituents. We first validate our model by comparison with density functional theory calculations of simple cubic superlattices of small CdSe NPs, and we show the existence of a regime, relevant to experiments, where NP interactions are predominantly dipole-like. We then apply our model to binary superlattices and find striking differences between the stable geometries of lattices composed of polarizable and nonpolarizable NPs. Finally, we discuss the interplay of dipolar and ligand-ligand interactions in determining the stability of NP superlattices.

3.
Nano Lett ; 18(1): 255-261, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29227689

RESUMEN

Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilities substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Finally, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.

4.
J Chem Phys ; 148(4): 044104, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390830

RESUMEN

Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike. There is a clear need for software that provides rapid, reliable, and easy access to a wide range of advanced sampling methods and that facilitates implementation of new techniques as they emerge. Here we present SSAGES, a publicly available Software Suite for Advanced General Ensemble Simulations designed to interface with multiple widely used molecular dynamics simulations packages. SSAGES allows facile application of a variety of enhanced sampling techniques-including adaptive biasing force, string methods, and forward flux sampling-that extract meaningful free energy and transition path data from all-atom and coarse-grained simulations. A noteworthy feature of SSAGES is a user-friendly framework that facilitates further development and implementation of new methods and collective variables. In this work, the use of SSAGES is illustrated in the context of simple representative applications involving distinct methods and different collective variables that are available in the current release of the suite. The code may be found at: https://github.com/MICCoM/SSAGES-public.

5.
Proc Natl Acad Sci U S A ; 112(1): E6-14, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25492932

RESUMEN

Despite its ubiquitous character and relevance in many branches of science and engineering, nucleation from solution remains elusive. In this framework, molecular simulations represent a powerful tool to provide insight into nucleation at the molecular scale. In this work, we combine theory and molecular simulations to describe urea nucleation from aqueous solution. Taking advantage of well-tempered metadynamics, we compute the free-energy change associated to the phase transition. We find that such a free-energy profile is characterized by significant finite-size effects that can, however, be accounted for. The description of the nucleation process emerging from our analysis differs from classical nucleation theory. Nucleation of crystal-like clusters is in fact preceded by large concentration fluctuations, indicating a predominant two-step process, whereby embryonic crystal nuclei emerge from dense, disordered urea clusters. Furthermore, in the early stages of nucleation, two different polymorphs are seen to compete.


Asunto(s)
Simulación de Dinámica Molecular , Urea/química , Cristalización , Soluciones , Termodinámica
6.
Nano Lett ; 17(4): 2547-2553, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28287746

RESUMEN

Heterogeneous nanostructures, such as quantum dots (QDs) embedded in solid matrices or core-shell nanoparticles, are promising platforms for a wide variety of applications, including phosphors with increased quantum yield, photocatalysis, and solar energy conversion. However, characterizing and controlling their interfacial morphology and defects, which greatly influence their electronic properties, have proven difficult in numerous cases. Here we carried out atomistic calculations on chalcogenide nanostructured materials, i.e., PbSe QDs in CdSe matrices and CdSe embedded in PbSe, and we established how interfacial and core structures affect their electronic properties. In particular, we showed that defects present at interfaces of PbSe nanoparticles and CdSe matrices give rise to detrimental intragap states, degrading the performance of photovoltaic devices. Instead, the electronic gaps of the inverted system (CdSe dots in PbSe) are clean, indicating that this material has superior electronic properties for solar applications. In addition, our calculations predicted that the core structure of CdSe and in turn its band gap may be tuned by applying pressure to the PbSe matrix, providing a means to engineering the properties of new functional materials.

7.
J Chem Phys ; 146(24): 244703, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668040

RESUMEN

The magnitude of the pH of the surface of water continues to be a contentious topic in the physical chemistry of aqueous interfaces. Recent theoretical studies have shown little or no preference for the proton to be at the surface compared to the bulk. Using ab initio molecular dynamics simulations, we revisit the propensity of the excess proton for the air-water interface with a particular focus on the role of instantaneous liquid interfaces. We find a more pronounced presence for the proton to be at the air-water interface. The enhanced water structuring around the proton results in the presence of proton wires that run parallel to the surface as well as a hydrophobic environment made up of under-coordinated topological defect water molecules, both of which create favorable conditions for proton confinement at the surface. The Grotthuss mechanism within the structured water layer involves a mixture of both concerted and closely spaced stepwise proton hops. The proton makes excursions within the first solvation layer either in proximity to or along the instantaneous interface.

8.
Proc Natl Acad Sci U S A ; 110(34): 13723-8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23868853

RESUMEN

The diffusion of protons through water is understood within the framework of the Grotthuss mechanism, which requires that they undergo structural diffusion in a stepwise manner throughout the water network. Despite long study, this picture oversimplifies and neglects the complexity of the supramolecular structure of water. We use first-principles simulations and demonstrate that the currently accepted picture of proton diffusion is in need of revision. We show that proton and hydroxide diffusion occurs through periods of intense activity involving concerted proton hopping followed by periods of rest. The picture that emerges is that proton transfer is a multiscale and multidynamical process involving a broader distribution of pathways and timescales than currently assumed. To rationalize these phenomena, we look at the 3D water network as a distribution of closed directed rings, which reveals the presence of medium-range directional correlations in the liquid. One of the natural consequences of this feature is that both the hydronium and hydroxide ion are decorated with proton wires. These wires serve as conduits for long proton jumps over several hydrogen bonds.


Asunto(s)
Modelos Químicos , Protones , Agua/química , Difusión , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular
9.
J Am Chem Soc ; 134(41): 17221-33, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22992035

RESUMEN

Controlling the shape of crystals is of great practical relevance in fields like pharmacology and fine chemistry. Here we examine the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology. To prevent this undesired effect, inhibitors that selectively favor or discourage the growth of specific crystal faces can be used. In urea the most relevant faces are the {001} and the {110} which are known to grow fast and slow, respectively. The relevant growth speed difference between these two crystal faces is responsible for the needle-like structure of crystals grown in water solution. To prevent this effect, additives are used to slow down the growth of one face relative to another, thus controlling the shape of the crystal. We study the growth of fast {001} and slow {110} faces in water solution and the effect of shape controlling inhibitors like biuret. Extensive sampling through molecular dynamics simulations provides a microscopic picture of the growth mechanism and of the role of the additives. We find a continuous growth mechanism on the {001} face, while the slow growing {110} face evolves through a birth and spread process, in which the rate-determining step is the formation on the surface of a two-dimensional crystalline nucleus. On the {001} face, growth inhibitors like biuret compete with urea for the adsorption on surface lattice sites; on the {110} face instead additives cannot interact specifically with surface sites and play a marginal sterical hindrance of the crystal growth. The free energies of adsorption of additives and urea are evaluated with advanced simulation methods (well-tempered metadynamics) allowing a microscopic understanding of the selective effect of additives. Based on this case study, general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out. Our work is a step toward a rational development of novel shape-affecting additives.


Asunto(s)
Urea/química , Cristalización , Modelos Moleculares , Simulación de Dinámica Molecular
10.
Nat Commun ; 11(1): 3037, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546791

RESUMEN

The investigation of salts in water at extreme conditions is crucial to understanding the properties of aqueous fluids in the Earth. We report first principles (FP) and classical molecular dynamics simulations of NaCl in the dilute limit, at temperatures and pressures relevant to the Earth's upper mantle. Similar to ambient conditions, we observe two metastable states of the salt: the contact (CIP) and the solvent-shared ion-pair (SIP), which are entropically and enthalpically favored, respectively. We find that the free energy barrier between the CIP and SIP minima increases at extreme conditions, and that the stability of the CIP is enhanced in FP simulations, consistent with the decrease of the dielectric constant of water. The minimum free energy path between the CIP and SIP becomes smoother at high pressure, and the relative stability of the two configurations is affected by water self-dissociation, which can only be described properly by FP simulations.

11.
Front Mol Biosci ; 6: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058166

RESUMEN

Rationalizing the structure and structure-property relations for complex materials such as polymers or biomolecules relies heavily on the identification of local atomic motifs, e.g., hydrogen bonds and secondary structure patterns, that are seen as building blocks of more complex supramolecular and mesoscopic structures. Over the past few decades, several automated procedures have been developed to identify these motifs in proteins given the atomic structure. Being based on a very precise understanding of the specific interactions, these heuristic criteria formulate the question in a way that implies the answer, by defining a list of motifs based on those that are known to be naturally occurring. This makes them less likely to identify unexpected phenomena, such as the occurrence of recurrent motifs in disordered segments of proteins, and less suitable to be applied to different polymers whose structure is not driven by hydrogen bonds, or even to polypeptides when appearing in unusual, non-biological conditions. Here we discuss how unsupervised machine learning schemes can be used to recognize patterns based exclusively on the frequency with which different motifs occur, taking high-resolution structures from the Protein Data Bank as benchmarks. We first discuss the application of a density-based motif recognition scheme in combination with traditional representations of protein structure (namely, interatomic distances and backbone dihedrals). Then, we proceed one step further toward an entirely unbiased scheme by using as input a structural representation based on the atomic density and by employing supervised classification to objectively assess the role played by the representation in determining the nature of atomic-scale patterns.

12.
Sci Data ; 6: 190002, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30694229

RESUMEN

We propose a strategy and present a simple tool to facilitate scientific data reproducibility by making available, in a distributed manner, all data and procedures presented in scientific papers, together with metadata to render them searchable and discoverable. In particular, we describe a graphical user interface (GUI), Qresp, to curate papers (i.e. generate metadata) and to explore curated papers and automatically access the data presented in scientific publications.


Asunto(s)
Conjuntos de Datos como Asunto , Almacenamiento y Recuperación de la Información , Reproducibilidad de los Resultados , Metadatos , Error Científico Experimental , Publicaciones Seriadas , Programas Informáticos
13.
J Chem Theory Comput ; 14(6): 2881-2888, 2018 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-29694787

RESUMEN

We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.


Asunto(s)
Dipéptidos/química , Simulación de Dinámica Molecular , Alanina/química , Dipéptidos/metabolismo , Enlace de Hidrógeno , Termodinámica
14.
ACS Nano ; 12(10): 10084-10094, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30216045

RESUMEN

Generating multiple excitons by a single high-energy photon is a promising third-generation solar energy conversion strategy. We demonstrate that multiple exciton generation (MEG) in PbS|CdS Janus-like heteronanostructures is enhanced over that of single-component and core/shell nanocrystal architectures, with an onset close to two times the PbS band gap. We attribute the enhanced MEG to the asymmetric nature of the heteronanostructure that results in an increase in the effective Coulomb interaction that drives MEG and a reduction of the competing hot exciton cooling rate. Slowed cooling occurs through effective trapping of hot-holes by a manifold of valence band interfacial states having both PbS and CdS character, as evidenced by photoluminescence studies and ab initio calculations. Using transient photocurrent spectroscopy, we find that the MEG characteristics of the individual nanostructures are maintained in conductive arrays and demonstrate that these quasi-spherical PbS|CdS nanocrystals can be incorporated as the main absorber layer in functional solid-state solar cell architectures. Finally, based upon our analysis, we provide design rules for the next generation of engineered nanocrystals to further improve the MEG characteristics.

15.
J Chem Theory Comput ; 13(3): 1317-1327, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28121147

RESUMEN

In this paper a set of computational tools for identifying the phases contained in a system composed of atoms or molecules is introduced. The method is rooted in graph theory and combines atom centered symmetry functions, adjacency matrices, and clustering algorithms to identify regions of space where the properties of the system constituents can be considered uniform. We show how this method can be used to define collective variables and how these collective variables can be used to enhance the sampling of nucleation events. We then show how this method can be used to analyze simulations of crystal nucleation and growth by using it to analyze simulations of the nucleation of the molecular crystal urea and simulations of nucleation in a semiconducting alloy. The semiconducting alloy example we discuss is particular challenging as multiple nucleation centers are formed. We show, however, that our algorithm is able to detect the grain boundaries in the resulting polycrystal.

16.
IUCrJ ; 2(Pt 2): 256-66, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25866662

RESUMEN

Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation.

17.
Acta Crystallogr C Struct Chem ; 70(Pt 2): 132-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24508958

RESUMEN

Recent experimental evidence has shown that the nucleation of 1,3,5-tris(4-bromophenyl)benzene (3BrY) follows a two-step mechanism. In this work, the formation of clusters of 3BrY from homogeneous water and methanol solutions is simulated using metadynamics. The local structure of 3BrY molecules in the clusters is then compared with the low-temperature crystal structure of 3BrY, as well as with an alternative 3BrY high-pressure crystal packing obtained through Parrinello-Rahaman molecular dynamics simulations. It is found that the interactions between the aromatic cores of 3BrY represent the main supramolecular motif observed in both the local structure of the prenucleation clusters and in the crystalline state. Within the clusters, these interactions lead to the presence of dimers and trimers locally arranged in crystal-like configurations.

18.
J Phys Chem B ; 118(46): 13226-35, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25286281

RESUMEN

In this work, we revisit the role of nuclear quantum effects on the structural and electronic properties of the excess proton in bulk liquid water using advanced molecular dynamics techniques. The hydronium ion is known to be a weak acceptor of a hydrogen bond which gives it some hydrophobic character. Quantum effects reduce the degree of this hydrophobicity which facilitates the fluctuations of the protons along the wires compared to the classical proton. Although the Eigen and Zundel species still appear to be dominant motifs, quantum fluctuations result in rather drastic events where both transient autoionization and delocalization over extended proton wires can simultaneously occur. These wild fluctuations also result in a significant change of the electronic properties of the system such as the broadening of the electronic density of states. An analysis of the Wannier functions indicate that quantum fluctuations of neat water molecules result in transient charging with subtle similarities and differences to that of the excess proton.

19.
J Chem Theory Comput ; 9(6): 2526-30, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26583849

RESUMEN

We introduce a new collective variable (CV) that can be used to increase the frequency with which nucleation events are observed in biased atomistic simulations. This CV forces the ions to aggregate into clusters but does not force the ions to order themselves in a particular pattern. We perform metadynamics simulations using this CV in order to examine nucleation in a solution of sodium chloride and find that for small cluster sizes the usual bulk rocksalt structure is less stable than a structure that resembles wurtzite.

20.
J Phys Chem Lett ; 4(24): 4241-6, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-26296172

RESUMEN

Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA