Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 14: 1254697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942327

RESUMEN

Introduction: CXCL17 is a mucosally secreted protein, and the most recently identified human chemokine, an assignment based on protein fold prediction and chemotactic activity for leukocytes. However, these credentials have been the subject of much recent discussion and no experimental evidence has been presented regarding the definitive structure of CXCL17. In this study, we evaluated the structural and chemoattractant credentials of CXCL17 to better characterize this molecule, and gain deeper insights into its functional role as a glycosaminoglycan (GAG) binding protein. Methods: In the absence of structural information, in silico modeling techniques assessed the likelihood of CXCL17 adopting a chemokine fold. Recombinant CXCL17 was synthesized in mammalian and prokaryotic systems. Modified Boyden chamber and real-time chemotaxis assays assessed the ability of CXCL17 to promote chemotaxis of murine splenocytes, human neutrophils, and CXCR1 transfectants. The efficacy of CXCL17 binding to GAGs was quantified with solid-phase assays and bio-layer interferometry techniques. Results: All modeling efforts failed to support classification of CXCL17 as a chemokine based on its predicted conformation. Recombinant CXCL17 was observed to dimerize as a function of concentration, a characteristic of several chemokines. Contrary to a previous report, CXCL17 was not chemotactic for murine splenocytes, although it was a low-potency chemoattractant for human neutrophils at micromolar concentrations, several orders of magnitude higher than those required for CXCL8. As anticipated owing to its highly basic nature, CXCL17 bound to GAGs robustly, with key C-terminal motifs implicated in this process. While inactive via CXCR1, CXCL17 was found to inhibit CXCR1-mediated chemotaxis of transfectants to CXCL8 in a dose-dependent manner. Discussion: In summary, despite finding little evidence for chemokine-like structure and function, CXCL17 readily bound GAGs, and could modulate chemotactic responses to another chemokine in vitro. We postulate that such modulation is a consequence of superior GAG binding, and that C-terminal fragments of CXCL17 may serve as prototypic inhibitors of chemokine function.


Asunto(s)
Quimiocinas , Glicosaminoglicanos , Humanos , Animales , Ratones , Glicosaminoglicanos/metabolismo , Quimiocinas/metabolismo , Quimiotaxis , Neutrófilos/metabolismo , Mamíferos/metabolismo , Quimiocinas CXC/metabolismo
2.
Biochim Biophys Acta Proteins Proteom ; 1871(6): 140946, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562488

RESUMEN

Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.


Asunto(s)
Péptido Hidrolasas , Streptococcus pyogenes , Inmunidad Innata
3.
Matrix Biol ; 93: 95-114, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32599145

RESUMEN

The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.


Asunto(s)
Empalme Alternativo , Matriz Extracelular/metabolismo , Inmunidad Innata , Tenascina/química , Tenascina/genética , Línea Celular , Linaje de la Célula , Humanos , Especificidad de Órganos , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Tenascina/metabolismo
4.
Methods Cell Biol ; 143: 371-400, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310788

RESUMEN

The extracellular matrix molecule tenascin-C (TNC) was discovered over 30 years ago, and its tightly regulated pattern of expression since sparked keen interest in the scientific community. In adult tissues, TNC expression is restricted to specific niches and areas of active remodeling or high mechanical strain. However, while most healthy tissues contain little TNC, its transient expression upon cellular stress or tissue injury helps to mediate repair and restore homeostasis. Persistent expression of TNC is associated with chronic inflammation, fibrosis, and cancer, where methods for its detection are emerging as a reliable means to predict disease onset, prognosis, and response to treatment. Because studying the expression of this large matrix molecule is not always straightforward, here we describe basic techniques to examine tissue levels of TNC mRNA and protein. We also describe methods for purifying recombinant TNC, knocking down its expression, and creating cell-derived matrices with or without TNC within.


Asunto(s)
Bioensayo/métodos , Matriz Extracelular/metabolismo , Imagen Molecular/métodos , Tenascina/análisis , Animales , Bioensayo/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Ratones , ARN Mensajero/análisis , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tenascina/genética , Tenascina/aislamiento & purificación , Tenascina/metabolismo
5.
Cell Adh Migr ; 9(1-2): 48-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25482829

RESUMEN

Tenascin-C is a large, multimodular, extracellular matrix glycoprotein that exhibits a very restricted pattern of expression but an enormously diverse range of functions. Here, we discuss the importance of deciphering the expression pattern of, and effects mediated by, different forms of this molecule in order to fully understand tenascin-C biology. We focus on both post transcriptional and post translational events such as splicing, glycosylation, assembly into a 3D matrix and proteolytic cleavage, highlighting how these modifications are key to defining tenascin-C function.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Transducción de Señal/fisiología , Tenascina/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA