RESUMEN
Advances in proteomic assay technologies have significantly increased coverage and throughput, enabling recent increases in the number of large-scale population-based proteomic studies of human plasma and serum. Improvements in multiplexed protein assays have facilitated the quantification of thousands of proteins over a large dynamic range, a key requirement for detecting the lowest-ranging, and potentially the most disease-relevant, blood-circulating proteins. In this perspective, we examine how populational proteomic datasets in conjunction with other concurrent omic measures can be leveraged to better understand the genomic and non-genomic correlates of the soluble proteome, constructing biomarker panels for disease prediction, among others. Mass spectrometry workflows are discussed as they are becoming increasingly competitive with affinity-based array platforms in terms of speed, cost, and proteome coverage due to advances in both instrumentation and workflows. Despite much success, there remain considerable challenges such as orthogonal validation and absolute quantification. We also highlight emergent challenges associated with study design, analytical considerations, and data integration as population-scale studies are run in batches and may involve longitudinal samples collated over many years. Lastly, we take a look at the future of what the nascent next-generation proteomic technologies might provide to the analysis of large sets of blood samples, as well as the difficulties in designing large-scale studies that will likely require participation from multiple and complex funding sources and where data sharing, study designs, and financing must be solved.
Asunto(s)
Proteómica , Humanos , Biomarcadores/sangre , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodosRESUMEN
Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between â¼600 and 900 cell surface N-glycoproteins were identified from only 25-200 µg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Animales , Ratones , Proteómica/métodos , Biotina , Flujo de Trabajo , Estreptavidina , Reproducibilidad de los Resultados , Glicoproteínas de Membrana , Fenómenos Magnéticos , ProteomaRESUMEN
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."
Asunto(s)
Modelos Moleculares , Ubiquitina-Proteína Ligasas , Ubiquitinación , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Protein acylation links energetic substrate flux with cellular adaptive responses. SIRT5 is a NAD(+)-dependent lysine deacylase and removes both succinyl and malonyl groups. Using affinity enrichment and label free quantitative proteomics, we characterized the SIRT5-regulated lysine malonylome in wild-type (WT) and Sirt5(-/-) mice. 1,137 malonyllysine sites were identified across 430 proteins, with 183 sites (from 120 proteins) significantly increased in Sirt5(-/-) animals. Pathway analysis identified glycolysis as the top SIRT5-regulated pathway. Importantly, glycolytic flux was diminished in primary hepatocytes from Sirt5(-/-) compared to WT mice. Substitution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic acid, a malonyllysine mimic, suppressed its enzymatic activity. Comparison with our previous reports on acylation reveals that malonylation targets a different set of proteins than acetylation and succinylation. These data demonstrate that SIRT5 is a global regulator of lysine malonylation and provide a mechanism for regulation of energetic flux through glycolysis.
Asunto(s)
Sirtuinas/metabolismo , Acilación , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Citosol/metabolismo , Técnicas de Silenciamiento del Gen , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Células HEK293 , Humanos , Hígado/metabolismo , Malonatos/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Imitación Molecular , Sirtuinas/deficiencia , Sirtuinas/genéticaRESUMEN
Transcriptional regulation is the key to ensuring that proteins are expressed at the proper time and the proper amount. In Escherichia coli, the transcription factor cAMP receptor protein (CRP) is responsible for much of this regulation. Questions remain, however, regarding the regulation of CRP activity itself. Here, we demonstrate that a lysine (K100) on the surface of CRP has a dual function: to promote CRP activity at Class II promoters, and to ensure proper CRP steady state levels. Both functions require the lysine's positive charge; intriguingly, the positive charge of K100 can be neutralized by acetylation using the central metabolite acetyl phosphate as the acetyl donor. We propose that CRP K100 acetylation could be a mechanism by which the cell downwardly tunes CRP-dependent Class II promoter activity, whilst elevating CRP steady state levels, thus indirectly increasing Class I promoter activity. This mechanism would operate under conditions that favor acetate fermentation, such as during growth on glucose as the sole carbon source or when carbon flux exceeds the capacity of the central metabolic pathways.
Asunto(s)
Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilación , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Protein posttranslational modifications (PTMs) are of increasing interest in biomedical research, yet studies rarely examine more than one PTM. One barrier to multi-PTM studies is the time cost for both sample preparation and data acquisition, which scale linearly with the number of modifications. The most prohibitive requirement is often the need for large amounts of sample, which must be increased proportionally with the number of PTM enrichment steps. Here, a streamlined, quantitative label-free proteomic workflow-"one-pot" PTM enrichment-that enables comprehensive identification and quantification of peptides containing acetylated and succinylated lysine residues from a single sample containing as little as 1 mg mitochondria protein is described. Coupled with a label-free, data-independent acquisition (DIA), 2235 acetylated and 2173 succinylated peptides with the one-pot method are identified and quantified and peak areas are shown to be highly correlated between the one-pot and traditional single-PTM enrichments. The 'one-pot' method makes possible detection of multiple PTMs occurring on the same peptide, and it is shown that it can be used to make unique biological insights into PTM crosstalk. Compared to single-PTM enrichments, the one-pot workflow has equivalent reproducibility and enables direct assessment of PTM crosstalk from biological samples in less time from less tissue.
Asunto(s)
Cromatografía de Afinidad/métodos , Lisina/química , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Ácido Succínico/química , Acetilación , Animales , Ratones , Proteínas Mitocondriales/química , Espectrometría de Masas en TándemRESUMEN
SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.
Asunto(s)
Cardiolipinas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Hepatocitos/enzimología , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Sirtuinas/metabolismo , Sustitución de Aminoácidos , Animales , Cardiolipinas/química , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Humanos , Lisina/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sirtuinas/química , Sirtuinas/genéticaRESUMEN
Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Complejos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , MAP Quinasa Quinasa Quinasa 4/genética , Ratones , Complejos Multiproteicos/genética , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Proteínas Nucleares/genéticaRESUMEN
Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process, including the nutrient-sensing target of rapamycin (TOR) pathway and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.
Asunto(s)
Caenorhabditis elegans/fisiología , Dieta , Etanolaminas/metabolismo , Longevidad/fisiología , Transducción de Señal , Amidas/farmacología , Amidohidrolasas/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Regulación del Desarrollo de la Expresión Génica , Longevidad/efectos de los fármacos , Mutación , Transactivadores/metabolismoRESUMEN
Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202-214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.
Asunto(s)
Hígado/enzimología , Péptidos/aislamiento & purificación , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Proteómica/métodos , Animales , Ensayos Analíticos de Alto Rendimiento , Ratones , Reproducibilidad de los Resultados , Programas InformáticosRESUMEN
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Asunto(s)
Proteínas de Neoplasias/sangre , Neoplasias/metabolismo , Péptidos/análisis , Proteómica/métodos , Cromatografía Liquida/métodos , Humanos , Marcaje Isotópico , Espectrometría de Masas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/aislamiento & purificación , Neoplasias/sangre , Péptidos/química , Reproducibilidad de los ResultadosRESUMEN
The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken ß-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).
Asunto(s)
Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Animales , Encéfalo/patología , Codón sin Sentido , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Longevidad , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Mapeo de Interacción de Proteínas , ProteolisisRESUMEN
Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease.
Asunto(s)
Infecciones por Haemophilus/microbiología , Haemophilus influenzae/metabolismo , Haemophilus/metabolismo , Lipopolisacáridos/química , Ácido N-Acetilneuramínico/análisis , Fosforilcolina/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Haemophilus/química , Haemophilus/clasificación , Haemophilus/aislamiento & purificación , Haemophilus influenzae/química , Haemophilus influenzae/clasificación , Haemophilus influenzae/aislamiento & purificación , Humanos , Lipopolisacáridos/metabolismo , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Fosforilcolina/metabolismoRESUMEN
In Escherichia coli, acetylation of proteins at lysines depends largely on a non-enzymatic acetyl phosphate-dependent mechanism. To assess the functional significance of this post-translational modification, we first grew wild-type cells in buffered tryptone broth with glucose and monitored acetylation over time by immunochemistry. Most acetylation occurred in stationary phase and paralleled glucose consumption and acetate excretion, which began upon entry into stationary phase. Transcription of rprA, a stationary phase regulator, exhibited similar behavior. To identify sites and substrates with significant acetylation changes, we used label-free, quantitative proteomics to monitor changes in protein acetylation. During growth, both the number of identified sites and the extent of acetylation increased with considerable variation among lysines from the same protein. As glucose-regulated lysine acetylation was predominant in central metabolic pathways and overlapped with acetyl phosphate-regulated acetylation sites, we deleted the major carbon regulator CRP and observed a dramatic loss of acetylation that could be restored by deleting the enzyme that degrades acetyl phosphate. We propose that acetyl phosphate-dependent acetylation is a response to carbon flux that could regulate central metabolism.
Asunto(s)
Acetiltransferasas/metabolismo , Ciclo del Carbono , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Acetatos/metabolismo , Acetilación , Acetiltransferasas/genética , Ciclo del Carbono/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Lisina/metabolismo , Redes y Vías Metabólicas , ProteómicaRESUMEN
Breast cancer is a heterogeneous disease whose molecular diversity is not well reflected in clinical and pathological markers used for prognosis and treatment selection. As tumor cells secrete proteins into the extracellular environment, some of these proteins reach circulation and could become suitable biomarkers for improving diagnosis or monitoring response to treatment. As many signaling pathways and interaction networks are altered in cancerous tissues by protein phosphorylation, changes in the secretory phosphoproteome of cancer tissues could reflect both disease progression and subtype. To test this hypothesis, we compared the phosphopeptide-enriched fractions obtained from proteins secreted into conditioned media (CM) derived from five luminal and five basal type breast cancer cell lines using label-free quantitative mass spectrometry. Altogether over 5000 phosphosites derived from 1756 phosphoproteins were identified, several of which have the potential to qualify as phosphopeptide plasma biomarker candidates for the more aggressive basal and also the luminal-type breast cancers. The analysis of phosphopeptides from breast cancer patient plasma and controls allowed us to construct a discovery list of phosphosites under rigorous collection conditions, and second to qualify discovery candidates generated from the CM studies. Indeed, a set of basal-specific phosphorylation CM site candidates derived from IBP3, CD44, OPN, FSTL3, LAMB1, and STC2, and luminal-specific candidates derived from CYTC and IBP5 were selected and, based on their presence in plasma, quantified across all cell line CM samples using Skyline MS1 intensity data. Together, this approach allowed us to assemble a set of novel cancer subtype specific phosphopeptide candidates for subsequent biomarker verification and clinical validation.
Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Neoplasias de la Mama/sangre , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Fosforilación , Células Tumorales CultivadasRESUMEN
Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.
Asunto(s)
Lisina/metabolismo , Redes y Vías Metabólicas/fisiología , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica/métodos , Sirtuina 3/metabolismo , Acetilación , Animales , Biología Computacional , Espectrometría de Masas , Redes y Vías Metabólicas/genética , Ratones , Modelos Biológicos , Sirtuina 3/deficienciaRESUMEN
We report the implementation of high-quality signal processing algorithms into ProteoWizard, an efficient, open-source software package designed for analyzing proteomics tandem mass spectrometry data. Specifically, a new wavelet-based peak-picker (CantWaiT) and a precursor charge determination algorithm (Turbocharger) have been implemented. These additions into ProteoWizard provide universal tools that are independent of vendor platform for tandem mass spectrometry analyses and have particular utility for intralaboratory studies requiring the advantages of different platforms convergent on a particular workflow or for interlaboratory investigations spanning multiple platforms. We compared results from these tools to those obtained using vendor and commercial software, finding that in all cases our algorithms resulted in a comparable number of identified peptides for simple and complex samples measured on Waters, Agilent, and AB SCIEX quadrupole time-of-flight and Thermo Q-Exactive mass spectrometers. The mass accuracy of matched precursor ions also compared favorably with vendor and commercial tools. Additionally, typical analysis runtimes (â¼1-100 ms per MS/MS spectrum) were short enough to enable the practical use of these high-quality signal processing tools for large clinical and research data sets.
Asunto(s)
Péptidos/química , Espectrometría de Masas en Tándem/métodos , Algoritmos , Bases de Datos de ProteínasRESUMEN
Recent advances in commercial mass spectrometers with higher resolving power and faster scanning capabilities have expanded their functionality beyond traditional data-dependent acquisition (DDA) to targeted proteomics with higher precision and multiplexing. Using an orthogonal quadrupole time-of flight (QqTOF) LC-MS system, we investigated the feasibility of implementing large-scale targeted quantitative assays using scheduled, high resolution multiple reaction monitoring (sMRM-HR), also referred to as parallel reaction monitoring (sPRM). We assessed the selectivity and reproducibility of PRM, also referred to as parallel reaction monitoring, by measuring standard peptide concentration curves and system suitability assays. By evaluating up to 500 peptides in a single assay, the robustness and accuracy of PRM assays were compared to traditional SRM workflows on triple quadrupole instruments. The high resolution and high mass accuracy of the full scan MS/MS spectra resulted in sufficient selectivity to monitor 6-10 MS/MS fragment ions per target precursor, providing flexibility in postacquisition assay refinement and optimization. The general applicability of the sPRM workflow was assessed in complex biological samples by first targeting 532 peptide precursor ions in a yeast lysate, and then 466 peptide precursors from a previously generated candidate list of differentially expressed proteins in whole cell lysates from E. coli. Lastly, we found that sPRM assays could be rapidly and efficiently developed in Skyline from DDA libraries when acquired on the same QqTOF platform, greatly facilitating their successful implementation. These results establish a robust sPRM workflow on a QqTOF platform to rapidly transition from discovery analysis to highly multiplexed, targeted peptide quantitation.
Asunto(s)
Espectrometría de Masas/métodos , Péptidos/análisis , Programas Informáticos , Animales , Caenorhabditis elegans/citología , Cromatografía Líquida de Alta Presión , Escherichia coli/citología , Saccharomyces cerevisiae/citología , Factores de TiempoRESUMEN
UNLABELLED: Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. The Skyline document model contains extensive mass spectrometry data from targeted proteomics experiments performed using selected reaction monitoring, parallel reaction monitoring and data-independent and data-dependent acquisition methods. Researchers have developed software tools that perform statistical analysis of the experimental data contained within Skyline documents. The new external tools framework allows researchers to integrate their tools into Skyline without modifying the Skyline codebase. Installed tools provide point-and-click access to downstream statistical analysis of data processed in Skyline. The framework also specifies a uniform interface to format tools for installation into Skyline. Tool developers can now easily share their tools with proteomics researchers using Skyline. AVAILABILITY AND IMPLEMENTATION: Skyline is available as a single-click self-updating web installation at http://skyline.maccosslab.org. This Web site also provides access to installable external tools and documentation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.