RESUMEN
BACKGROUND: Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS: This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS: Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS: PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Asunto(s)
Bronquiectasia , Trastornos de la Motilidad Ciliar , Ciliopatías , Síndrome de Kartagener , Humanos , Mutación , Bronquiectasia/diagnóstico , Bronquiectasia/genética , Cilios , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/genética , Ciliopatías/complicaciones , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genéticaRESUMEN
BACKGROUND: Extended-spectrum cephalosporin resistance (ESC-R) in Escherichia coli and Klebsiella pneumoniae is a healthcare threat; high gastrointestinal carriage rates are reported from South-east Asia. Colonisation prevalence data in Cambodia are lacking. The aim of this study was to determine gastrointestinal colonisation prevalence of ESC-resistant E. coli (ESC-R-EC) and K. pneumoniae (ESC-R-KP) in Cambodian children/adolescents and associated socio-demographic risk factors; and to characterise relevant resistance genes, their genetic contexts, and the genetic relatedness of ESC-R strains using whole genome sequencing (WGS). RESULTS: Faeces and questionnaire data were obtained from individuals < 16 years in north-western Cambodia, 2012. WGS of cultured ESC-R-EC/KP was performed (Illumina). Maximum likelihood phylogenies were used to characterise relatedness of isolates; ESC-R-associated resistance genes and their genetic contexts were identified from de novo assemblies using BLASTn and automated/manual annotation. 82/148 (55%) of children/adolescents were ESC-R-EC/KP colonised; 12/148 (8%) were co-colonised with both species. Independent risk factors for colonisation were hospitalisation (OR: 3.12, 95% CI [1.52-6.38]) and intestinal parasites (OR: 3.11 [1.29-7.51]); school attendance conferred decreased risk (OR: 0.44 [0.21-0.92]. ESC-R strains were diverse; the commonest ESC-R mechanisms were blaCTX-M 1 and 9 sub-family variants. Structures flanking these genes were highly variable, and for blaCTX-M-15, - 55 and - 27 frequently involved IS26. Chromosomal blaCTX-M integration was common in E. coli. CONCLUSIONS: Gastrointestinal ESC-R-EC/KP colonisation is widespread in Cambodian children/adolescents; hospital admission and intestinal parasites are independent risk factors. The genetic contexts of blaCTX-M are highly mosaic, consistent with rapid horizontal exchange. Chromosomal integration of blaCTX-M may result in stable propagation in these community-associated pathogens.
Asunto(s)
Portador Sano/epidemiología , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/epidemiología , Tracto Gastrointestinal/microbiología , Infecciones por Klebsiella/epidemiología , Adolescente , Antibacterianos/farmacología , Cambodia/epidemiología , Portador Sano/microbiología , Niño , Preescolar , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/patogenicidad , Femenino , Tracto Gastrointestinal/parasitología , Hospitalización , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Masculino , Enfermedades Parasitarias/epidemiología , Enfermedades Parasitarias/microbiología , Prevalencia , Factores de Riesgo , Encuestas y Cuestionarios , Secuenciación Completa del GenomaRESUMEN
Studies of the transmission epidemiology of antimicrobial-resistant Escherichia coli, such as strains harboring extended-spectrum beta-lactamase (ESBL) genes, frequently use selective culture of rectal surveillance swabs to identify isolates for molecular epidemiological investigation. Typically, only single colonies are evaluated, which risks underestimating species diversity and transmission events. We sequenced the genomes of 16 E. coli colonies from each of eight fecal samples (n = 127 genomes; one failure), taken from different individuals in Cambodia, a region of high ESBL-producing E. coli prevalence. Sequence data were used to characterize both the core chromosomal diversity of E. coli isolates and their resistance/virulence gene content as a proxy measure of accessory genome diversity. The 127 E. coli genomes represented 31 distinct sequence types (STs). Seven (88%) of eight subjects carried ESBL-positive isolates, all containing blaCTX-M variants. Diversity was substantial, with a median of four STs/individual (range, 1 to 10) and wide genetic divergence at the nucleotide level within some STs. In 2/8 (25%) individuals, the same blaCTX-M variant occurred in different clones, and/or different blaCTX-M variants occurred in the same clone. Patterns of other resistance genes and common virulence factors, representing differences in the accessory genome, were also diverse within and between clones. The substantial diversity among intestinally carried ESBL-positive E. coli bacteria suggests that fecal surveillance, particularly if based on single-colony subcultures, will likely underestimate transmission events, especially in high-prevalence settings.
Asunto(s)
Escherichia coli/clasificación , Escherichia coli/enzimología , Heces/microbiología , Variación Genética , beta-Lactamasas/metabolismo , Adolescente , Cambodia , ADN Bacteriano/química , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Escherichia coli/aislamiento & purificación , Femenino , Genes Bacterianos , Genoma Bacteriano , Genotipo , Humanos , Masculino , Análisis de Secuencia de ADN , Factores de Virulencia/genéticaRESUMEN
OBJECTIVES: There are limited data on Enterobacter cloacae outbreaks and fewer describing these in association with NDM-1. With whole-genome sequencing, we tested the hypothesis that a cluster of 16 E. cloacae bacteraemia cases in a Nepali neonatal unit represented a single clonal outbreak, using a wider set of epidemiologically unrelated clinical E. cloacae isolates for comparison. METHODS: Forty-three isolates were analysed, including 23 E. cloacae and 3 Citrobacter sp. isolates obtained from blood cultures from 16 neonates over a 3 month period. These were compared with two contemporaneous community-associated drug-resistant isolates from adults, a unit soap dispenser isolate and a set of historical invasive isolates (n=14) from the same geographical locality. RESULTS: There were two clear neonatal outbreaks and one isolated case in the unit. One outbreak was associated with an NDM-1 plasmid also identified in a historical community-associated strain. The smaller, second outbreak was likely associated with a contaminated soap dispenser. The two community-acquired adult cases and three sets of historical hospital-associated neonatal isolates represented four additional genetic clusters. CONCLUSIONS: E. cloacae infections in this context represent several different transmission networks, operating at the community/hospital and host strain/plasmid levels. Wide sampling frames and high-resolution typing methods are needed to describe the complex molecular epidemiology of E. cloacae outbreaks, which is not appropriately reflected by routine susceptibility phenotypes. Soap dispensers may represent a reservoir for E. cloacae and bacterial strains and plasmids may persist in hospitals and in the community for long periods, sporadically being involved in outbreaks of disease.
Asunto(s)
Bacteriemia/epidemiología , Brotes de Enfermedades , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Adulto , Bacteriemia/microbiología , Bacteriemia/transmisión , Sangre/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Transmisión de Enfermedad Infecciosa , Enterobacter cloacae/clasificación , Enterobacter cloacae/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/transmisión , Microbiología Ambiental , Genoma Bacteriano , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Epidemiología Molecular , Datos de Secuencia Molecular , Nepal/epidemiología , Estudios RetrospectivosRESUMEN
NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying bla(NDM-1). The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although bla(NDM) variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention.
Asunto(s)
Cromosomas Bacterianos/química , Infección Hospitalaria/epidemiología , Enfermedades Endémicas , Genoma Bacteriano , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Antibacterianos/uso terapéutico , Mapeo Cromosómico , Cromosomas Bacterianos/metabolismo , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Hospitales , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación , Nepal/epidemiología , Plásmidos/química , Plásmidos/metabolismo , beta-Lactamasas/metabolismoRESUMEN
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Predisposición Genética a la Enfermedad , Secuenciación Completa del Genoma , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Hereditary haemorrhagic telangiectasia (HHT) is a disease characterised by abnormal vascular structures, and most commonly caused by mutations in ENG, ACVRL1 or SMAD4 encoding endothelial cell-expressed proteins involved in TGF-ß superfamily signalling. The majority of mutations reported on the HHT mutation database are predicted to lead to stop codons, either due to frameshifts or direct nonsense substitutions. The proportion is higher for ENG (67%) and SMAD4 (65%) than for ACVRL1 (42%), p < 0.0001. Here, by focussing on ENG, we report why conventional views of these mutations may need to be revised. Of the 111 stop codon-generating ENG mutations, on ExPASy translation, all except one were premature termination codons (PTCs), sited at least 50-55 bp upstream of the final exon-exon boundary of the main endoglin isoform, L-endoglin. This strongly suggests that the mutated RNA species will undergo nonsense-mediated decay. We provide new in vitro expression data to support dominant negative activity of stable truncated endoglin proteins but suggest these will not generate HHT: the single natural stop codon mutation in L-endoglin (sited within 50-55 nucleotides of the final exon-exon boundary) is unlikely to generate functional protein since it replaces the entire transmembrane domain, as would 8 further natural stop codon mutations, if the minor S-endoglin isoform were implicated in HHT pathogenesis. Finally, next-generation RNA sequencing data of 7 different RNA libraries from primary human endothelial cells demonstrate that multiple intronic regions of ENG are transcribed. The potential consequences of heterozygous deletions or duplications of such regions are discussed. These data support the haploinsufficiency model for HHT pathogenesis, explain why final exon mutations have not been detected to date in HHT, emphasise the potential need for functional examination of non-PTC-generating mutations, and lead to proposals for an alternate stratification system of mutational types for HHT genotype-phenotype correlations.