Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394873

RESUMEN

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Axones/metabolismo , Quimiocina CXCL12/genética , Monocitos/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Fosfohidrolasa PTEN/genética , Células Ganglionares de la Retina/fisiología
2.
Proc Natl Acad Sci U S A ; 114(2): E209-E218, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28049831

RESUMEN

Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.


Asunto(s)
Regeneración Nerviosa , Traumatismos del Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Retina/fisiología , Zinc/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de Transporte de Catión , Quelantes/farmacología , Etilaminas/farmacología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/farmacología , Ácidos Sulfanílicos/farmacología
3.
J Neurosci ; 36(35): 9148-60, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581456

RESUMEN

UNLABELLED: Action potential initiation and propagation in myelinated axons require ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Disruption of these domains after injury impairs nervous system function. Traditionally, injured CNS axons are considered refractory to regeneration, but some recent approaches challenge this view by showing robust long-distance regeneration. However, whether these approaches allow remyelination and promote the reestablishment of AIS and nodes of Ranvier is unknown. Using mouse optic nerve crush as a model for CNS traumatic injury, we performed a detailed analysis of AIS and node disruption after nerve crush. We found significant disruption of AIS and loss of nodes within days of the crush, and complete loss of nodes 1 week after injury. Genetic deletion of the tumor suppressor phosphatase and tensin homolog (Pten) in retinal ganglion cells (RGCs), coupled with stimulation of RGCs by inflammation and cAMP, dramatically enhanced regeneration. With this treatment, we found significant reestablishment of RGC AIS, remyelination, and even reassembly of nodes in regions proximal, within, and distal to the crush site. Remyelination began near the retina, progressed distally, and was confirmed by electron microscopy. Although axons grew rapidly, remyelination and nodal ion channel clustering was much slower. Finally, genetic deletion of ankyrinG from RGCs to block AIS reassembly did not affect axon regeneration, indicating that preservation of neuronal polarity is not required for axon regeneration. Together, our results demonstrate, for the first time, that regenerating CNS axons can be remyelinated and reassemble new AIS and nodes of Ranvier. SIGNIFICANCE STATEMENT: We show, for the first time, that regenerated CNS axons have the capacity to both remyelinate and reassemble the axon initial segments and nodes of Ranvier necessary for rapid and efficient action potential propagation.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Enfermedades del Nervio Óptico/patología , Enfermedades del Nervio Óptico/fisiopatología , Animales , Ancirinas/genética , Ancirinas/metabolismo , Axones/ultraestructura , Moléculas de Adhesión Celular Neuronal , Toxina del Cólera/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/patología , Nódulos de Ranvier/ultraestructura , Espectrina/metabolismo , Estadísticas no Paramétricas , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 109(23): 9149-54, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615390

RESUMEN

The mature optic nerve cannot regenerate when injured, leaving victims of traumatic nerve damage or diseases such as glaucoma with irreversible visual losses. Recent studies have identified ways to stimulate retinal ganglion cells to regenerate axons part-way through the optic nerve, but it remains unknown whether mature axons can reenter the brain, navigate to appropriate target areas, or restore vision. We show here that with adequate stimulation, retinal ganglion cells are able to regenerate axons the full length of the visual pathway and on into the lateral geniculate nucleus, superior colliculus, and other visual centers. Regeneration partially restores the optomotor response, depth perception, and circadian photoentrainment, demonstrating the feasibility of reconstructing central circuitry for vision after optic nerve damage in mature mammals.


Asunto(s)
Axones/fisiología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Nervio Óptico/fisiología , Regeneración/fisiología , Células Ganglionares de la Retina/fisiología , Zimosan/farmacología , Animales , Proteínas de Unión al Calcio/metabolismo , Ritmo Circadiano/fisiología , AMP Cíclico/metabolismo , Dependovirus , Eliminación de Gen , Vectores Genéticos/genética , Cuerpos Geniculados/fisiología , Integrasas/metabolismo , Ratones , Nervio Óptico/citología , Fosfohidrolasa PTEN/genética , Células Ganglionares de la Retina/citología , Colículos Superiores/fisiología , Zimosan/administración & dosificación
5.
J Neurosci ; 33(37): 14816-24, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027282

RESUMEN

Although neurons are normally unable to regenerate their axons after injury to the CNS, this situation can be partially reversed by activating the innate immune system. In a widely studied instance of this phenomenon, proinflammatory agents have been shown to cause retinal ganglion cells, the projection neurons of the eye, to regenerate lengthy axons through the injured optic nerve. However, the role of different molecules and cell populations in mediating this phenomenon remains unclear. We show here that neutrophils, the first responders of the innate immune system, play a central role in inflammation-induced regeneration. Numerous neutrophils enter the mouse eye within a few hours of inducing an inflammatory reaction and express high levels of the atypical growth factor oncomodulin (Ocm). Immunodepletion of neutrophils diminished Ocm levels in the eye without altering levels of CNTF, leukemia inhibitory factor, or IL-6, and suppressed the proregenerative effects of inflammation. A peptide antagonist of Ocm suppressed regeneration as effectively as neutrophil depletion. Macrophages enter the eye later in the inflammatory process but appear to be insufficient to stimulate extensive regeneration in the absence of neutrophils. These data provide the first evidence that neutrophils are a major source of Ocm and can promote axon regeneration in the CNS.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Regeneración Nerviosa/fisiología , Neutrófilos/metabolismo , Enfermedades del Nervio Óptico/patología , Enfermedades del Nervio Óptico/fisiopatología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Factor Neurotrófico Ciliar/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-6/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Receptores de Superficie Celular/metabolismo , Retina/citología , Células Ganglionares de la Retina/metabolismo , Estilbamidinas/metabolismo , Vías Visuales/fisiología
6.
Proc Natl Acad Sci U S A ; 106(1): 163-8, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19109439

RESUMEN

Members of the poxvirus family have been investigated for their applications as vaccines and expression vectors and, more recently, because of concern for their potential as biological weapons. Vaccinia virus, the prototypic member, evolves through multiple forms during its replication. Here, we show a surprising way by which vaccinia hijacks coatomer for early viral biogenesis. Whereas coatomer forms COPI vesicles in the host early secretory system, vaccinia formation bypasses this role of coatomer, but instead, depends on coatomer interacting with the host KDEL receptor. To gain insight into the viral roles of these two host proteins, we have detected them on the earliest recognized viral forms. These findings not only suggest insights into early vaccinia biogenesis but also reveal an alternate mechanism by which coatomer acts.


Asunto(s)
Proteína Coatómero/fisiología , Receptores de Péptidos/fisiología , Virus Vaccinia/genética , Replicación Viral , Animales , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento , Proteína Coatómero/metabolismo , Cricetinae , Cricetulus , VIH/genética , VIH/fisiología , Receptores de Péptidos/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(46): 19587-92, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19875691

RESUMEN

The inflammatory response that accompanies central nervous system (CNS) injury can affect neurological outcome in both positive and negative ways. In the optic nerve, a CNS pathway that normally fails to regenerate when damaged, intraocular inflammation causes retinal ganglion cells (RGCs) to switch into an active growth state and extend lengthy axons down the nerve. The molecular basis of this phenomenon is uncertain. A prior study showed that oncomodulin (Ocm), a Ca(2+)-binding protein secreted by a macrophage cell line, is a potent axon-promoting factor for RGCs. However, it is not known whether Ocm contributes to the physiological effects of intraocular inflammation in vivo, and there are conflicting reports in the literature regarding its expression and significance. We show here that intraocular inflammation causes infiltrative cells of the innate immune system to secrete high levels of Ocm, and that agents that prevent Ocm from binding to its receptor suppress axon regeneration. These results were verified in different strains, species, and experimental models, and establish Ocm as a potent growth-promoting signal between the innate immune system and neurons in vivo.


Asunto(s)
Axones/fisiología , Proteínas de Unión al Calcio/fisiología , Inflamación/inmunología , Regeneración Nerviosa , Nervio Óptico/fisiología , Animales , Axones/metabolismo , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
8.
Nat Commun ; 13(1): 4418, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906210

RESUMEN

The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair.


Asunto(s)
Axones , Proteínas Represoras/metabolismo , Traumatismos de la Médula Espinal , Animales , Axones/fisiología , Ratones , Regeneración Nerviosa/genética , Células Ganglionares de la Retina/fisiología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Factores de Transcripción/genética
9.
J Neurosci ; 30(46): 15654-63, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21084621

RESUMEN

The inability of retinal ganglion cells (RGCs) to regenerate damaged axons through the optic nerve has dire consequences for victims of traumatic nerve injury and certain neurodegenerative diseases. Several strategies have been shown to induce appreciable regeneration in vivo, but the regrowth of axons through the entire optic nerve and on into the brain remains a major challenge. We show here that the induction of a controlled inflammatory response in the eye, when combined with elevation of intracellular cAMP and deletion of the gene encoding pten (phosphatase and tensin homolog), enables RGCs to regenerate axons the full length of the optic nerve in mature mice; approximately half of these axons cross the chiasm, and a rare subset (∼1%) manages to enter the thalamus. Consistent with our previous findings, the axon-promoting effects of inflammation were shown to require the macrophage-derived growth factor Oncomodulin (Ocm). Elevation of cAMP increased the ability of Ocm to bind to its receptors in the inner retina and augmented inflammation-induced regeneration twofold. Inflammation combined with elevated cAMP and PTEN deletion increased activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways and augmented regeneration ∼10-fold over the level induced by either pten deletion or Zymosan alone. Thus, treatments that synergistically alter the intrinsic growth state of RGCs produce unprecedented levels of axon regeneration in the optic nerve, a CNS pathway long believed to be incapable of supporting such growth.


Asunto(s)
Axones/fisiología , Proteínas de Unión al Calcio/fisiología , AMP Cíclico/fisiología , Regeneración Nerviosa/fisiología , Nervio Óptico/fisiología , Fosfohidrolasa PTEN/deficiencia , Animales , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regeneración Nerviosa/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Ratas , Ratas Endogámicas F344
10.
Restor Neurol Neurosci ; 37(6): 525-544, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31609715

RESUMEN

The optic nerve conveys information about the outside world from the retina to multiple subcortical relay centers. Until recently, the optic nerve was widely believed to be incapable of re-growing if injured, with dire consequences for victims of traumatic, ischemic, or neurodegenerative diseases of this pathway. Over the past 10-20 years, research from our lab and others has made considerable progress in defining factors that normally suppress axon regeneration and the ability of retinal ganglion cells, the projection neurons of the retina, to survive after nerve injury. Here we describe research from our lab on the role of inflammation-derived growth factors, suppression of inter-cellular signals among diverse retinal cell types, and combinatorial therapies, along with related studies from other labs, that enable animals with optic nerve injury to regenerate damaged retinal axons back to the brain. These studies raise the possibility that vision might one day be restored to people with optic nerve damage.


Asunto(s)
Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Humanos , Mediadores de Inflamación/metabolismo , Nervio Óptico/ultraestructura , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA