Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Monit Assess ; 187(8): 499, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26160738

RESUMEN

Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 µg/m(2)/year. Total selenium ranged between non-detect and 2.9 µg/L and, on average, the total load (0.027 µg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 µg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.


Asunto(s)
Bahías/química , Sedimentos Geológicos/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Ecosistema , Mercurio/análisis , Control de Calidad , Lluvia , San Francisco , Selenio/análisis
2.
Sci Total Environ ; 605-606: 482-497, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28672237

RESUMEN

Urban watersheds are significantly anthropogenically-altered landscapes. Most previous studies cover relatively short periods, without addressing concentrations, loads, and yields in relation to annual climate fluctuations, and datasets on Ag, Se, PBDEs, and PCDD/Fs are rare. Intensive storm-focused sampling and continuous turbidity monitoring were employed to quantify pollution at two locations in the Guadalupe River (California, USA). At a downstream location, we determined loads of suspended sediment (SS) for 14yrs., mercury (HgT), PCBs, and total organic carbon (TOC) (8yrs), total methylmercury (MeHgT) (6yrs), nutrients, and trace elements including Ag and Se (3yrs), DDTs, chlordanes, dieldrin, and PBDEs (2yrs), and PCDD/Fs (1yr). At an upstream location, we determined loads of SS for 4yrs. and HgT, MeHgT, PCBs and PCDD/Fs for 1yr. These data were compared to previous studies, climatically adjusted, and used to critically assess the use of small datasets for estimating annual average conditions. Concentrations and yields in the Guadalupe River appear to be atypical for total phosphorus, DDTs, dieldrin, HgT, MeHgT, Cr, Ni, and possibly Se due to local conditions. Other pollutants appear to be similar to other urban systems. On average, wet season flow varied by 6.5-fold and flow-weighted mean (FWM) concentrations varied 4.4-fold, with an average 7.1-fold difference between minimum and maximum annual loads. Loads for an average runoff year for each pollutant were usually less than the best estimate of long-term average. The arithmetic average of multiple years of load data or a FWM concentration combined with mean annual flow was also usually below the best estimate of long-term average load. Mean annual loads using sampled years were also less than the best estimate of long-term average by a mean of 2.2-fold. Climatic adjustment techniques are needed for computing estimates of long-term average annual loads.

3.
Sci Total Environ ; 526: 251-61, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25955693

RESUMEN

Urban runoff has been identified in water quality policy documents for San Francisco Bay as a large and potentially controllable source of pollutants. In response, concentrations of suspended sediments and a range of trace organic pollutants were intensively measured in dry weather and storm flow runoff from a 100% urban watershed. Flow in this highly urban watershed responded very quickly to rainfall and varied widely resulting in rapid changes of turbidity, suspended sediments and pollutant concentrations. Concentrations of each organic pollutant class were within similar ranges reported in other studies of urban runoff, however comparison was limited for several of the pollutants given information scarcity. Consistently among PCBs, PBDEs, and PAHs, the more hydrophobic congeners were transported in larger proportions during storm flows relative to low flows. Loads for Water Years 2007-2010 were estimated using regression with turbidity during the monitored months and a flow weighted mean concentration for unmonitored dry season months. More than 91% of the loads for every pollutant measured were transported during storm events, along with 87% of the total discharge. While this dataset fills an important local data gap for highly urban watersheds of San Francisco Bay, the methods, the uniqueness of the analyte list, and the resulting interpretations have applicability for managing pollutant loads in urban watersheds in other parts of the world.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Dioxinas/análisis , Éteres Difenilos Halogenados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Lluvia , San Francisco , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA