Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Orthod Craniofac Res ; 27(2): 321-331, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009409

RESUMEN

OBJECTIVE(S): This study aims to evaluate the influence of the piezocision surgery in the orthodontic biomechanics, as well as in the magnitude and direction of tooth movement in the mandibular arch using novel artificial intelligence (AI)-automated tools. MATERIALS AND METHODS: Nineteen patients, who had piezocision performed in the lower arch at the beginning of treatment with the goal of accelerating tooth movement, were compared to 19 patients who did not receive piezocision. Cone beam computed tomography (CBCT) and intraoral scans (IOS) were acquired before and after orthodontic treatment. AI-automated dental tools were used to segment and locate landmarks in dental crowns from IOS and root canals from CBCT scans to quantify 3D tooth movement. Differences in mesial-distal, buccolingual, intrusion and extrusion linear movements, as well as tooth long axis angulation and rotation were compared. RESULTS: The treatment time for the control and experimental groups were 13.2 ± 5.06 and 13 ± 5.52 months respectively (P = .176). Overall, anterior and posterior tooth movement presented similar 3D linear and angular changes in the groups. The piezocision group demonstrated greater (P = .01) mesial long axis angulation of lower right first premolar (4.4 ± 6°) compared with control group (0.02 ± 4.9°), while the mesial rotation was significantly smaller (P = .008) in the experimental group (0.5 ± 7.8°) than in the control (8.5 ± 9.8°) considering the same tooth. CONCLUSION: The open source-automated dental tools facilitated the clinicians' assessment of piezocision treatment outcomes. The piezocision surgery prior to the orthodontic treatment did not decrease the treatment time and did not influence in the orthodontic biomechanics, leading to similar tooth movements compared to conventional treatment.


Asunto(s)
Inteligencia Artificial , Técnicas de Movimiento Dental , Humanos , Resultado del Tratamiento , Diente Premolar , Técnicas de Movimiento Dental/métodos , Tomografía Computarizada de Haz Cónico
2.
Orthod Craniofac Res ; 26(4): 560-567, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36811276

RESUMEN

OBJECTIVE: To present and validate an open-source fully automated landmark placement (ALICBCT) tool for cone-beam computed tomography scans. MATERIALS AND METHODS: One hundred and forty-three large and medium field of view cone-beam computed tomography (CBCT) were used to train and test a novel approach, called ALICBCT that reformulates landmark detection as a classification problem through a virtual agent placed inside volumetric images. The landmark agents were trained to navigate in a multi-scale volumetric space to reach the estimated landmark position. The agent movements decision relies on a combination of DenseNet feature network and fully connected layers. For each CBCT, 32 ground truth landmark positions were identified by 2 clinician experts. After validation of the 32 landmarks, new models were trained to identify a total of 119 landmarks that are commonly used in clinical studies for the quantification of changes in bone morphology and tooth position. RESULTS: Our method achieved a high accuracy with an average of 1.54 ± 0.87 mm error for the 32 landmark positions with rare failures, taking an average of 4.2 second computation time to identify each landmark in one large 3D-CBCT scan using a conventional GPU. CONCLUSION: The ALICBCT algorithm is a robust automatic identification tool that has been deployed for clinical and research use as an extension in the 3D Slicer platform allowing continuous updates for increased precision.


Asunto(s)
Puntos Anatómicos de Referencia , Imagenología Tridimensional , Cefalometría/métodos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Puntos Anatómicos de Referencia/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38533395

RESUMEN

This paper proposes a machine learning model using privileged information (LUPI) and normalized mutual information feature selection method (NMIFS) to build a robust and accurate framework to diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To build such a model, we employ clinical, quantitative imaging and additional biological markers as privileged information. We show that clinical features play a leading role in the TMJ OA diagnosis and quantitative imaging features, extracted from cone-beam computerized tomography (CBCT) scans, improve the model performance. As the proposed LUPI model employs biological data in the training phase (which boosted the model performance), this data is unnecessary for the testing stage, indicating the model can be widely used even when only clinical and imaging data are collected. The model was validated using 5-fold stratified cross-validation with hyperparameter tuning to avoid the bias of data splitting. Our method achieved an AUC, specificity and precision of 0.81, 0.79 and 0.77, respectively.

4.
J World Fed Orthod ; 11(6): 207-215, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400658

RESUMEN

In the digital dentistry era, new tools, algorithms, data science approaches, and computer applications are available to researchers and clinicians. However, there is also a strong need for better knowledge and understanding of multisource data applications, including three-dimensional imaging information such as cone-beam computed tomography images and digital dental models for multidisciplinary cases. In addition, artificial intelligence models and automated clinical decision systems are rising. The clinician needs to plan the treatment based on state-of-the-art diagnosis for better and more personalized treatment. This article aimed to review basic concepts and the current panorama of digital implant planning in orthodontics, with open-source and closed-source tools for assessing cone-beam computed images and digital dental models. The visualization and processing of the three-dimensional data allow better implant planning based on bone conditions, adjacent teeth and root positions, and the prognosis of the case. We showed that many tools for assessment, segmentation, and visualization of cone-beam computed tomographic images and digital dental models could facilitate the treatment planning of patients needing implants or space closure. The tools and approaches presented are toward personalized treatment and better prognosis, following the path to a more automated clinical decision system based on multisource three-dimensional data, artificial intelligence models, and digital planning. In summary, the orthodontist needs to analyze each patient individually and use different software or tools that better fit their practice, allowing efficient treatment planning and satisfactory results with an adequate prognosis.


Asunto(s)
Implantes Dentales , Ortodoncia , Humanos , Inteligencia Artificial , Atención Odontológica , Ortodoncistas
5.
PLoS One ; 17(10): e0275033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36223330

RESUMEN

The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada de Haz Cónico/métodos , Cabeza , Procesamiento de Imagen Asistido por Computador/métodos , Cintigrafía , Cráneo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA