Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816514

RESUMEN

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Antecedentes Genéticos , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
J Chem Inf Model ; 63(10): 3209-3225, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141492

RESUMEN

The human soluble epoxide hydrolase (sEH) is a bifunctional enzyme that modulates the levels of regulatory epoxy lipids. The hydrolase activity is carried out by a catalytic triad located at the center of a wide L-shaped binding site, which contains two hydrophobic subpockets at both sides. On the basis of these structural features, it can be assumed that desolvation is a major factor in determining the maximal achievable affinity that can be attained for this pocket. Accordingly, hydrophobic descriptors may be better suited to the search of novel hits targeting this enzyme. This study examines the suitability of quantum mechanically derived hydrophobic descriptors in the discovery of novel sEH inhibitors. To this end, three-dimensional quantitative structure-activity relationship (3D-QSAR) pharmacophores were generated by combining electrostatic and steric or alternatively hydrophobic and hydrogen-bond parameters in conjunction with a tailored list of 76 known sEH inhibitors. The pharmacophore models were then validated by using two external sets chosen (i) to rank the potency of four distinct series of compounds and (ii) to discriminate actives from decoys, using in both cases datasets taken from the literature. Finally, a prospective study was performed including a virtual screening of two chemical libraries to identify new potential hits, which were subsequently experimentally tested for their inhibitory activity on human, rat, and mouse sEH. The use of hydrophobic-based descriptors led to the identification of six compounds as inhibitors of the human enzyme with IC50 < 20 nM, including two with IC50 values of 0.4 and 0.7 nM. The results support the use of hydrophobic descriptors as a valuable tool in the search of novel scaffolds that encode a proper hydrophilic/hydrophobic distribution complementary to the target's binding site.


Asunto(s)
Epóxido Hidrolasas , Farmacóforo , Ratones , Humanos , Ratas , Animales , Epóxido Hidrolasas/química , Estudios Prospectivos , Relación Estructura-Actividad Cuantitativa , Inhibidores Enzimáticos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
4.
Chemistry ; 27(19): 6015-6027, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33666306

RESUMEN

Many (poly-)phenolic natural products, for example, curcumin and taxifolin, have been studied for their activity against specific hallmarks of neurodegeneration, such as amyloid-ß 42 (Aß42) aggregation and neuroinflammation. Due to their drawbacks, arising from poor pharmacokinetics, rapid metabolism, and even instability in aqueous medium, the biological activity of azobenzene compounds carrying a pharmacophoric catechol group, which have been designed as bioisoteres of curcumin has been examined. Molecular simulations reveal the ability of these compounds to form a hydrophobic cluster with Aß42, which adopts different folds, affecting the propensity to populate fibril-like conformations. Furthermore, the curcumin bioisosteres exceeded the parent compound in activity against Aß42 aggregation inhibition, glutamate-induced intracellular oxidative stress in HT22 cells, and neuroinflammation in microglial BV-2 cells. The most active compound prevented apoptosis of HT22 cells at a concentration of 2.5 µm (83 % cell survival), whereas curcumin only showed very low protection at 10 µm (21 % cell survival).


Asunto(s)
Amiloidosis , Curcumina , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Curcumina/farmacología , Humanos , Estrés Oxidativo
5.
Chemistry ; 24(22): 5813-5824, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29384229

RESUMEN

Inhibition of abnormal protein self-aggregation is an attractive strategy against amyloidogenic diseases, but has found limited success due to the complexity of protein self-assembly, the absence of fully reproducible aggregation assays, and the scarce knowledge of the inhibition mechanisms by small molecules. In this context, catechol-containing compounds may lead to covalent adducts with amyloid fibrils that interfere with the aggregation process. In particular, the covalent adduct formed between the oxidized form of (+)-taxifolin and an ß-amyloid (Aß42) suggests the involvement of a specific recognition motif that enables the chemical reaction with Aß42. In this study, we have examined the mechanisms implicated in the aza-Michael addition of the o-quinone species of (+)-taxifolin with Aß42 fibrils. The results support the binding of (+)-taxifolin to the hydrophobic groove delimited by the edges defined by Lys16 and Glu22 residues in the fibril. The chemical reaction proceeds through the nucleophilic attack of the deprotonated amino group of a Lys16 residue in a process activated by the interaction between the o-quinone ring with a vicinal Lys16 residue, as well as by a water-assisted proton transfer, which is the rate-limiting step of the reaction. This specific inhibition mechanism, which may explain the enhanced anti-aggregating activity of oxidized flavonoids compared to fresh compounds, holds promise for developing disease-modifying therapies.


Asunto(s)
Péptidos beta-Amiloides/química , Flavonoides/química , Quercetina/análogos & derivados , Amiloide/química , Péptidos beta-Amiloides/efectos de los fármacos , Biología Computacional , Flavonoides/farmacología , Glutamina/química , Lisina/química , Quercetina/química , Estereoisomerismo
6.
J Chem Inf Model ; 58(8): 1596-1609, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30010337

RESUMEN

Molecular alignment is a standard procedure for three-dimensional (3D) similarity measurements and pharmacophore elucidation. This process is influenced by several factors, such as the physicochemical descriptors utilized to account for the molecular determinants of biological activity and the reference templates. Relying on the hypothesis that the maximal achievable binding affinity for a drug-like molecule is largely due to desolvation, we explore a novel strategy for 3D molecular overlays that exploits the partitioning of molecular hydrophobicity into atomic contributions in conjunction with information about the distribution of hydrogen-bond (HB) donor/acceptor groups. A brief description of the method, as implemented in the software package PharmScreen, including the derivation of the fractional hydrophobic contributions within the quantum mechanical version of the Miertus-Scrocco-Tomasi (MST) continuum model, and the procedure utilized for the optimal superposition between molecules, is presented. The computational procedure is calibrated by using a data set of 402 molecules pertaining to 14 distinct targets taken from the literature and validated against the AstraZeneca test, which comprises 121 experimentally derived sets of molecular overlays. The results point out the suitability of the MST-based hydrophobic parameters for generating molecular overlays, as correct predictions were obtained for 94%, 79%, and 54% of the molecules classified into easy, moderate, and hard sets, respectively. Moreover, the results point out that this accuracy is attained at a much lower degree of identity between the templates used by hydrophobic/HB fields and electrostatic/steric ones. These findings support the usefulness of the hydrophobic/HB descriptors to generate complementary overlays that may be valuable to rationalize structure-activity relationships and for virtual screening campaigns.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Bibliotecas de Moléculas Pequeñas/química , Animales , Bases de Datos de Proteínas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Proteínas/metabolismo , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas/farmacología , Electricidad Estática
7.
J Nat Prod ; 80(2): 278-289, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28128562

RESUMEN

Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-ß peptide (Aß), which has stimulated the search for small molecules able to inhibit Aß aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aß aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aß aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Flavonoides/química , Fenoles/química , Quercetina/farmacología , Anciano , Precursor de Proteína beta-Amiloide , Apigenina/química , Benzaldehídos/química , Cinamatos/química , Depsidos/química , Humanos , Técnicas In Vitro , Estructura Molecular , Fragmentos de Péptidos/química , Quercetina/química , Ácido Rosmarínico
8.
J Enzyme Inhib Med Chem ; 32(1): 285-297, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28097911

RESUMEN

New coumaryl-thiazole derivatives with the acetamide moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and in vitro tested as acetylcholinesterase (AChE) inhibitors. 2-(diethylamino)-N-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)acetamide (6c, IC50 value of 43 nM) was the best AChE inhibitor with a selectivity index of 4151.16 over BuChE. Kinetic study of AChE inhibition revealed that 6c was a mixed-type inhibitor. Moreover, the result of H4IIE hepatoma cell toxicity assay for 6c showed negligible cell death. Molecular docking studies were also carried out to clarify the inhibition mode of the more active compounds. Best pose of compound 6c is positioned into the active site with the coumarin ring wedged between the residues of the CAS and catalytic triad of AChE. In addition, the coumarin ring is anchored into the gorge of the enzyme by H-bond with Tyr130.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Cumarinas/farmacología , Simulación del Acoplamiento Molecular , Animales , Línea Celular Tumoral , Diseño de Fármacos , Cinética , Ligandos , Análisis Espectral/métodos
9.
J Comput Chem ; 37(13): 1147-62, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26813046

RESUMEN

Since the development of structure-activity relationships about 50 years ago, 3D-QSAR methods belong to the most refined ligand-based in silico techniques for prediction of biological data using physicochemical molecular fields. In this scenario, this study reports the development and validation of quantum mechanical (QM)-based hydrophobic descriptors derived from the parametrized MST continuum solvation model to be used in 3D-QSAR studies within the framework of the Hydrophobic Pharmacophore (HyPhar) method. To this end, five sets of compounds reported in the literature (dopamine D2/D4 antagonists, antifungal 2-aryl-4-chromanones, and inhibitors of GSK-3, cruzain and thermolysin) have been revisited. The results derived from the QM/MST-based hydrophobic descriptors have been compared with previous CoMFA and CoMSIA studies, and examined in light of the available X-ray crystallographic structures of the targets. The analysis reveals that the combination of electrostatic and nonelectrostatic components of the octanol/water partition coefficient yields pharmacophoric models fully comparable with the predictive potential of standard 3D-QSAR techniques. Moreover, the graphical representation of the hydrophobic maps provides a direct linkage with the pattern of interactions found in crystallographic structures. Overall, the introduction of the QM/MST-based descriptors, which could be easily adapted to other continuum solvation formalisms, paves the way to novel computational strategies for disclosing structure-activity relationships in drug design. © 2016 Wiley Periodicals, Inc.

10.
Chem Res Toxicol ; 27(2): 279-89, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24387784

RESUMEN

Foodstuff could be a vector for naturally occurring and/or unwanted dangerous substances that can act either as they are or after their bioactivation. The scientific community agrees that the metabolic activity of chemicals should be taken into account for proper risk assessment. Unfortunately, the in vitro evaluation of a metabolic panel and analytical/biochemical detection in food-safety assessment are very expensive and challenging because of the abundance of data to analyze. In this context, properly validated computational protocols could be a useful tool for making metabolic and binding/activity predictions. This strategy has been applied to thioxanthone photoinitiators (TX), identified as food contaminants, especially in infant formulas, as reported by the European Food Safety Authority in 2005. Their lipophilicity suggests rapid hepatic metabolism, but the currently available data only concern 2-ITX. We have predicted phase I metabolites for the TX class of compounds and defined their binding affinity for the AR ligand-binding pocket using a local model based on available information about metabolism and AR activity. Some metabolites should undergo further in vitro or/and in vivo toxicological evaluations because they have proved to be suitable as ligands for AR.


Asunto(s)
Disruptores Endocrinos/metabolismo , Receptores Androgénicos/metabolismo , Xantonas/metabolismo , Animales , Contaminación de Alimentos , Humanos , Simulación del Acoplamiento Molecular , Ratas , Tioxantenos/metabolismo
11.
Curr Opin Struct Biol ; 87: 102870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914031

RESUMEN

The expansion of the chemical space to tangible libraries containing billions of synthesizable molecules opens exciting opportunities for drug discovery, but also challenges the power of computer-aided drug design to prioritize the best candidates. This directly hits quantum mechanics (QM) methods, which provide chemically accurate properties, but subject to small-sized systems. Preserving accuracy while optimizing the computational cost is at the heart of many efforts to develop high-quality, efficient QM-based strategies, reflected in refined algorithms and computational approaches. The design of QM-tailored physics-based force fields and the coupling of QM with machine learning, in conjunction with the computing performance of supercomputing resources, will enhance the ability to use these methods in drug discovery. The challenge is formidable, but we will undoubtedly see impressive advances that will define a new era.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Teoría Cuántica , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Humanos
12.
Front Pharmacol ; 14: 1244317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637414

RESUMEN

Chemical libraries have become of utmost importance to boost drug discovery processes. It is widely accepted that the quality of a chemical library depends, among others, on its availability and chemical diversity which help in rising the chances of finding good hits. In this regard, our group has developed a source for useful chemicals named Medicinal and Biological Chemistry (MBC) library. It originates from more than 30 years of experience in drug design and discovery of our research group and has successfully provided effective hits for neurological, neurodegenerative and infectious diseases. Moreover, in the last years, the European research infrastructure for chemical biology EU-OPENSCREEN has generated the European Chemical Biology library (ECBL) to be used as a source of hits for drug discovery. Here we present and discuss the updated version of the MBC library (MBC v.2022), enriched with new scaffolds and containing more than 2,500 compounds together with ECBL that collects about 100,000 small molecules. To properly address the improved potentialities of the new version of our MBC library in drug discovery, up to 44 among physicochemical and pharmaceutical properties have been calculated and compared with those of other well-known publicly available libraries. For comparison, we have used ZINC20, DrugBank, ChEMBL library, ECBL and NuBBE along with an approved drug library. Final results allowed to confirm the competitive chemical space covered by MBC v.2022 and ECBL together with suitable drug-like properties. In all, we can affirm that these two libraries represent an interesting source of new hits for drug discovery.

13.
J Med Chem ; 66(8): 5465-5483, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37021830

RESUMEN

Ebola virus (EBOV) is a single-strand RNA virus belonging to the Filoviridae family, which has been associated to most Ebola virus disease outbreaks to date, including the West African and the North Kivu epidemics between 2013 and 2022. This unprecedented health emergency prompted the search for effective medical countermeasures. Following up on the carbazole hit identified in our previous studies, we synthetized a new series of compounds, which demonstrated to prevent EBOV infection in cells by acting as virus entry inhibitors. The in vitro inhibitory activity was evaluated through the screening against surrogate models based on viral pseudotypes and further confirmed using replicative EBOV. Docking and molecular dynamics simulations joined to saturation transfer difference-nuclear magnetic resonance (STD-NMR) and mutagenesis experiments to elucidate the biological target of the most potent compounds. Finally, in vitro metabolic stability and in vivo pharmacokinetic studies were performed to confirm their therapeutic potential.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Replicación Viral
14.
ACS Med Chem Lett ; 13(11): 1812-1818, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385935

RESUMEN

Catechols have been largely investigated as antiaggregating agents toward ß-amyloid peptide. Herein, as a follow up of a previous series of hydroxycinnamic derivatives, we synthesized a small set of dihydroxy isomers for exploring the role of the reciprocal position of the two hydroxyl functions at a molecular level. Para- and ortho-derivatives effectively reduced amyloid fibrillization, while the meta-analogue was devoid of any activity in this respect. Electrochemical analyses showed that the antiaggregating potency correlates with the oxidation potential, hence indicating the proelectrophilic character as a prerequisite for activity. Interestingly, mass spectrometry studies and quantum mechanical calculations revealed different modes of action for active para- and ortho-derivatives, involving covalent or noncovalent interactions with ß-amyloid. The distinctive mode of action is also translated into a different cytotoxicity profile. This work clearly shows how apparently minimal structural modifications can completely change the compound behavior and generate alternative mechanisms of action of proelectrophilic chemical probes.

15.
Expert Opin Ther Pat ; 31(1): 53-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33012213

RESUMEN

Introduction: Despite the current interest caused by SARS-Cov-2, influenza continues to be one of the most serious health concerns, with an estimated 1 billion cases across the globe, including 3-5 million severe cases and 290,000-650,000 deaths worldwide. Areas covered: This manuscript reviews the efforts made in the development of small molecules for the treatment of influenza virus, primarily focused on patent applications in the last 5 years. Attention is paid to compounds targeting key functional viral proteins, such as the M2 channel, neuraminidase, and hemagglutinin, highlighting the evolution toward new ligands and scaffolds motivated by the emergence of resistant strains. Finally, the discovery of compounds against novel viral targets, such as the RNA-dependent RNA polymerase, is discussed. Expert opinion: The therapeutic potential of antiviral agents is limited by the increasing presence of resistant strains. This should encourage research on novel strategies for therapeutic intervention. In this context, the discovery of arbidol and JNJ7918 against hemagglutinin, and current efforts on RNA-dependent RNA polymerase have disclosed novel opportunities for therapeutic treatment. Studies should attempt to expand the therapeutic arsenal of anti-flu agents, often in combined therapies, to prevent future health challenges caused by influenza virus. Abbreviations: AlphaLISA: amplified luminescent proximity homogeneous assay; HA: hemagglutinin; NA: neuraminidase; RBD: receptor binding domain; RdRp: RNA-dependent RNA polymerase; SA: sialic Acid; TBHQ: tert-butyl hydroquinone; TEVC: two-electrode voltage clamp.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Descubrimiento de Drogas , Humanos , Gripe Humana/virología , Patentes como Asunto , Bibliotecas de Moléculas Pequeñas , Tratamiento Farmacológico de COVID-19
16.
Eur J Med Chem ; 223: 113654, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34175537

RESUMEN

Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.


Asunto(s)
Glicoproteínas/metabolismo , Proteína Niemann-Pick C1/metabolismo , Anticuerpos/inmunología , Anticuerpos/farmacología , Ebolavirus/metabolismo , Glicoproteínas/química , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/patología , Humanos , Simulación del Acoplamiento Molecular , Proteína Niemann-Pick C1/química , Proteína Niemann-Pick C1/inmunología , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Internalización del Virus/efectos de los fármacos
17.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917313

RESUMEN

The unprecedent situation generated by the COVID-19 global emergency has prompted us to actively work to fight against this pandemic by searching for repurposable agents among FDA approved drugs to shed light into immediate opportunities for the treatment of COVID-19 patients. In the attempt to proceed toward a proper rationalization of the search for new antivirals among approved drugs, we carried out a hierarchical in silico/in vitro protocol which successfully combines virtual and biological screening to speed up the identification of host-directed therapies against COVID-19 in an effective way. To this end a multi-target virtual screening approach focused on host-based targets related to viral entry, followed by the experimental evaluation of the antiviral activity of selected compounds, has been carried out. As a result, five different potentially repurposable drugs interfering with viral entry-cepharantine, clofazimine, metergoline, imatinib and efloxate-have been identified.

18.
J Med Chem ; 64(18): 13604-13621, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34496571

RESUMEN

Two series of new pyridyl-bearing fused bicyclic analogues designed to target the dual-tolerant regions of the non-nucleoside reverse transcriptase inhibitor (NNRTI)-binding pocket were synthesized and evaluated for their anti-HIV activities. Several compounds, such as 6, 14, 15, 21, 30, and 33, were found to be potent inhibitors against the wild-type (WT) HIV-1 strain or multiple NNRTI-resistant strains at low nanomolar levels. Detailed structure-activity relationships were obtained by utilizing the variation of moieties within the corresponding pharmacophores. In vitro metabolic stability profiles and some drug-like properties of selected compounds were assessed, furnishing the preliminary structure-metabolic stability relationships. Furthermore, molecular modeling studies elucidated the binding modes of compounds 6, 15, 21, and 30 in the binding pocket of WT, E138K, K103N, or Y181C HIV-1 RTs. These promising compounds can be used as lead compounds and warrant further structural optimization to yield more active HIV-1 inhibitors.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Compuestos Heterocíclicos con 2 Anillos/farmacología , Piridinas/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/metabolismo , Línea Celular , Diseño de Fármacos , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Mutación , Unión Proteica , Piridinas/síntesis química , Piridinas/metabolismo , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad
19.
Eur J Med Chem ; 225: 113779, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34418785

RESUMEN

Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aß42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminoquinolinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Aminoquinolinas/síntesis química , Aminoquinolinas/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo
20.
Eur J Med Chem ; 194: 112223, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32220685

RESUMEN

The influenza virus hemagglutinin (HA) is an attractive target for antiviral therapy due to its essential role in mediating virus entry into the host cell. We here report the identification of a class of N-benzyl-4,4,-disubstituted piperidines as influenza A virus fusion inhibitors with specific activity against the H1N1 subtype. Using the highly efficient one-step Ugi four-component reaction, diverse library of piperidine-based analogues was synthesized and evaluated to explore the structure-activity relationships (SAR). Mechanistic studies, including resistance selection with the most active compound (2) demonstrated that it acts as an inhibitor of the low pH-induced HA-mediated membrane fusion process. Computational studies identified an as yet unrecognized fusion inhibitor binding site, which is located at the bottom of the HA2 stem in close proximity to the fusion peptide. A direct π-stacking interaction between the N-benzylpiperidine moiety of 2 and F9HA2 of the fusion peptide, reinforced with an additional π-stacking interaction with Y119HA2, and a salt bridge of the protonated piperidine nitrogen with E120HA2, were identified as important interactions to mediate ligand binding. This site rationalized the observed SAR and provided a structural explanation for the H1N1-specific activity of our inhibitors. Furthermore, the HA1-S326V mutation resulting in resistance to 2 is close to the proposed new binding pocket. Our findings point to the N-benzyl-4,4,-disubstituted piperidines as an interesting class of influenza virus inhibitors, representing the first example of fusion peptide binders with great potential for anti-influenza drug development.


Asunto(s)
Antivirales/farmacología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Piperidinas/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Perros , Relación Dosis-Respuesta a Droga , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA