RESUMEN
Streptococcus pneumoniae persists as a leading cause of bacterial pneumonia despite the widespread use of polysaccharide-based vaccines. The limited serotype coverage of current vaccines has led to increased incidence of nonvaccine serotypes, as well as an increase in antibiotic resistance among these serotypes. Pneumococcal infection often follows a primary viral infection such as influenza virus, which hinders host defense and results in bacterial spread to the lungs. We previously isolated human monoclonal Abs (mAbs) against the conserved surface Ag pneumococcal histidine triad protein D (PhtD), and we demonstrated that mAbs to this Ag are protective against lethal pneumococcal challenge prophylactically and therapeutically. In this study, we elucidated the mechanism of protection of a protective anti-pneumococcal human mAb, PhtD3, which is mediated by the presence of complement and macrophages in a mouse model of pneumococcal infection. Treatment with mAb PhtD3 reduced blood and lung bacterial burden in mice, and mAb PhtD3 is able to bind to bacteria in the presence of the capsular polysaccharide, indicating exposure of surface PhtD on encapsulated bacteria. In a mouse model of secondary pneumococcal infection, protection mediated by mAb PhtD3 and another mAb targeting a different epitope, PhtD7, was reduced; however, robust protection was restored by combining mAb PhtD3 with mAb PhtD7, indicating a synergistic effect. Overall, these studies provide new insights into anti-pneumococcal mAb protection and demonstrate, to our knowledge, for the first time, that mAbs to pneumococcal surface proteins can protect against secondary pneumococcal infection in the mouse model.
Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Animales , Ratones , Anticuerpos Monoclonales , Epítopos , Pulmón , Vacunas Neumococicas , Anticuerpos Antibacterianos , Proteínas BacterianasRESUMEN
Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antígenos Virales , Metapneumovirus , Infecciones por Paramyxoviridae , Proteínas Virales de Fusión , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Antígenos Virales/química , Antígenos Virales/inmunología , Microscopía por Crioelectrón , Epítopos/inmunología , Humanos , Metapneumovirus/inmunología , Ratones , Infecciones por Paramyxoviridae/prevención & control , Prevención Primaria , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/inmunologíaRESUMEN
Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.
Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & controlRESUMEN
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1ß, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Asunto(s)
Antivirales/inmunología , Oxidasas Duales/metabolismo , Inmunidad Innata , Animales , Apoptosis , Bronquios/patología , Bronquios/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Gripe Humana/inmunología , Gripe Humana/patología , Gripe Humana/virología , Lactoperoxidasa/metabolismo , Ratones , Neuraminidasa/química , Neuraminidasa/metabolismo , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteolisis , ARN Viral/metabolismo , Tiocianatos , Proteínas Virales/química , Proteínas Virales/metabolismo , Inactivación de Virus , Internalización del Virus , Replicación ViralRESUMEN
Streptococcus pneumoniae remains a leading cause of bacterial pneumonia despite the widespread use of vaccines. While vaccines are effective at reducing the incidence of most serotypes included in vaccines, a rise in infection due to nonvaccine serotypes and moderate efficacy against some vaccine serotypes have contributed to high disease incidence. Additionally, numerous isolates of S. pneumoniae are antibiotic or multidrug resistant. Several conserved pneumococcal proteins prevalent in the majority of serotypes have been examined for their potential as vaccines in preclinical and clinical trials. An additional, yet-unexplored tool for disease prevention and treatment is the use of human monoclonal antibodies (MAbs) targeting conserved pneumococcal proteins. Here, we isolated the first human MAbs (PhtD3, PhtD6, PhtD7, PhtD8, and PspA16) against the pneumococcal histidine triad protein (PhtD) and the pneumococcal surface protein A (PspA), two conserved and protective antigens. MAbs to PhtD target diverse epitopes on PhtD, and MAb PspA16 targets the N-terminal segment of PspA. The PhtD-specific MAbs bind to multiple serotypes, while MAb PspA16 serotype breadth is limited. MAbs PhtD3 and PhtD8 prolong the survival of mice infected with pneumococcal serotype 3. Furthermore, MAb PhtD3 prolongs the survival of mice in intranasal and intravenous infection models with pneumococcal serotype 4 and in mice infected with pneumococcal serotype 3 when administered 24 h after pneumococcal infection. All PhtD and PspA MAbs demonstrate opsonophagocytic activity, suggesting a potential mechanism of protection. Our results identify new human MAbs for pneumococcal disease prevention and treatment and identify epitopes on PhtD and PspA recognized by human B cells.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Interacciones Huésped-Patógeno/inmunología , Hidrolasas/antagonistas & inhibidores , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/inmunología , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Relación Dosis-Respuesta Inmunológica , Epítopos/inmunología , Humanos , Hidrolasas/inmunología , Unión Proteica , SerogrupoRESUMEN
In autoimmune diseases, the accumulation of activated leukocytes correlates with inflammation and disease progression, and, therefore, the disruption of leukocyte trafficking is an active area of research. The serine/threonine protein kinase Tpl2 (MAP3K8) regulates leukocyte inflammatory responses and is also being investigated for therapeutic inhibition during autoimmunity. Here we addressed the contribution of Tpl2 to the regulation of macrophage chemokine receptor expression and migration in vivo using a mouse model of Tpl2 ablation. LPS stimulation of bone marrow-derived macrophages induced early CCR1 chemokine receptor expression but repressed CCR2 and CCR5 expression. Notably, early induction of CCR1 expression by LPS was dependent upon a signaling pathway involving Tpl2, PI3K, and ERK. On the contrary, Tpl2 was required to maintain the basal expression of CCR2 and CCR5 as well as to stabilize CCR5 mRNA expression. Consistent with impairments in chemokine receptor expression, tpl2(-/-) macrophages were defective in trafficking to the peritoneal cavity following thioglycollate-induced inflammation. Overall, this study demonstrates a Tpl2-dependent mechanism for macrophage expression of select chemokine receptors and provides further insight into how Tpl2 inhibition may be used therapeutically to disrupt inflammatory networks in vivo.
Asunto(s)
Quimiocinas/inmunología , Inflamación/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/inmunología , Receptores de Quimiocina/inmunología , Enfermedad Aguda , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Movimiento Celular/inmunología , Quimiocinas/metabolismo , Femenino , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores CCR1/genética , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CCR2/genética , Receptores CCR2/inmunología , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismoRESUMEN
BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV.
Asunto(s)
Virus BK/fisiología , Glándulas Salivales/virología , Replicación Viral , Secuencia de Aminoácidos , Animales , Virus BK/genética , Secuencia de Bases , Southern Blotting , Chlorocebus aethiops , Cartilla de ADN , ADN Viral/genética , Humanos , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Glándulas Salivales/citología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Células VeroRESUMEN
Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.
Asunto(s)
Antiinfecciosos , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Hepcidinas/metabolismo , Células HEK293 , Antiinfecciosos/farmacología , Inflamación/metabolismo , Células de la Médula Ósea , MamíferosRESUMEN
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Asunto(s)
Infecciones Neumocócicas , Adulto , Anticuerpos Antibacterianos , Niño , Humanos , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas , Streptococcus pneumoniae/genética , Vacunas ConjugadasRESUMEN
For individuals who are immunocompromised, the opportunistic fungal pathogen Pneumocystis jirovecii is capable of causing life-threatening pneumonia as the causative agent of Pneumocystis pneumonia (PCP). PCP remains an acquired immunodeficiency disease (AIDS)-defining illness in the era of antiretroviral therapy. In addition, a rise in non-human immunodeficiency virus (HIV)-associated PCP has been observed due to increased usage of immunosuppressive and immunomodulating therapies. With the persistence of HIV-related PCP cases and associated morbidity and mortality, as well as difficult to diagnose non-HIV-related PCP cases, an improvement over current treatment and prevention standards is warranted. Current therapeutic strategies have primarily focused on the administration of trimethoprim-sulfamethoxazole, which is effective at disease prevention. However, current treatments are inadequate for treatment of PCP and prevention of PCP-related death, as evidenced by consistently high mortality rates for those hospitalized with PCP. There are no vaccines in clinical trials for the prevention of PCP, and significant obstacles exist that have slowed development, including host range specificity, and the inability to culture Pneumocystis spp. in vitro. In this review, we overview the immune response to Pneumocystis spp., and discuss current progress on novel vaccines and therapies currently in the preclinical and clinical pipeline.
RESUMEN
Streptococcus pneumoniae (Pneumococcus) infections affect millions of people worldwide, cause serious mortality and represent a major economic burden. Despite recent successes due to pneumococcal vaccination and antibiotic use, Pneumococcus remains a significant medical problem. Airway epithelial cells, the primary responders to pneumococcal infection, orchestrate an extracellular antimicrobial system consisting of lactoperoxidase (LPO), thiocyanate anion and hydrogen peroxide (H2O2). LPO oxidizes thiocyanate using H2O2 into the final product hypothiocyanite that has antimicrobial effects against a wide range of microorganisms. However, hypothiocyanite's effect on Pneumococcus has never been studied. Our aim was to determine whether hypothiocyanite can kill S. pneumoniae. Bactericidal activity was measured in a cell-free in vitro system by determining the number of surviving pneumococci via colony forming units on agar plates, while bacteriostatic activity was assessed by measuring optical density of bacteria in liquid cultures. Our results indicate that hypothiocyanite generated by LPO exerted robust killing of both encapsulated and nonencapsulated pneumococcal strains. Killing of S. pneumoniae by a commercially available hypothiocyanite-generating product was even more pronounced than that achieved with laboratory reagents. Catalase, an H2O2 scavenger, inhibited killing of pneumococcal by hypothiocyanite under all circumstances. Furthermore, the presence of the bacterial capsule or lytA-dependent autolysis had no effect on hypothiocyanite-mediated killing of pneumococci. On the contrary, a pneumococcal mutant deficient in pyruvate oxidase (main bacterial H2O2 source) had enhanced susceptibility to hypothiocyanite compared to its wild-type strain. Overall, results shown here indicate that numerous pneumococcal strains are susceptible to LPO-generated hypothiocyanite.