Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 40(9): 1909-1917, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33837878

RESUMEN

The use of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has proven to be rapid and accurate for the majority of clinical isolates. Some gaps remain concerning rare, emerging, or highly pathogenic species, showing the need to continuously expand the databases. In this multicenter study, we evaluated the accuracy of the VITEK MS v3.2 database in identifying 1172 unique isolates compared to identification by DNA sequence analysis. A total of 93.6% of the isolates were identified to species or group/complex level. A remaining 5.2% of the isolates were identified to the genus level. Forty tests gave a result of no identification (0.9%) and 12 tests (0.3%) gave a discordant identification compared to the reference identification. VITEK MS is also the first MALDI-TOF MS system that is able to delineate the four members of the Acinetobacter baumannii complex at species level without any specific protocol or special analysis method. These findings demonstrate that the VITEK MS v3.2 database is highly accurate for the identification of bacteria and fungi encountered in the clinical laboratory as well as emerging species like Candida auris and the highly pathogenic Brucella species.


Asunto(s)
Bacterias/aislamiento & purificación , Brucella/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas , Levaduras/aislamiento & purificación , Bacterias/química , Bacterias/clasificación , Brucella/química , Brucella/clasificación , Brucella/patogenicidad , Bases de Datos Factuales/estadística & datos numéricos , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Levaduras/química , Levaduras/clasificación
2.
Plant Mol Biol ; 102(1-2): 55-72, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31748889

RESUMEN

KEY MESSAGE: Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina. The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species (S. alterniflora and S. maritima), their F1 hybrid S. x townsendii, and the neoallododecaploid S. anglica. We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/Copia-Ivana- Copia-SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hibridación Genética , MicroARNs/genética , MicroARNs/metabolismo , Poaceae/genética , Poaceae/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Secuencia de Bases , Elementos Transponibles de ADN , ADN de Plantas , Genes de Plantas/genética , Genoma de Planta , Inestabilidad Genómica , Anotación de Secuencia Molecular , Poliploidía
3.
Mob DNA ; 13(1): 31, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463202

RESUMEN

Plant, animal and protist genomes often contain endogenous viral elements (EVEs), which correspond to partial and sometimes entire viral genomes that have been captured in the genome of their host organism through a variety of integration mechanisms. While the number of sequenced eukaryotic genomes is rapidly increasing, the annotation and characterization of EVEs remains largely overlooked. EVEs that derive from members of the family Caulimoviridae are widespread across tracheophyte plants, and sometimes they occur in very high copy numbers. However, existing programs for annotating repetitive DNA elements in plant genomes are poor at identifying and then classifying these EVEs. Other than accurately annotating plant genomes, there is intrinsic value in a tool that could identify caulimovirid EVEs as they testify to recent or ancient host-virus interactions and provide valuable insights into virus evolution. In response to this research need, we have developed CAULIFINDER, an automated and sensitive annotation software package. CAULIFINDER consists of two complementary workflows, one to reconstruct, annotate and group caulimovirid EVEs in a given plant genome and the second to classify these genetic elements into officially recognized or tentative genera in the Caulimoviridae. We have benchmarked the CAULIFINDER package using the Vitis vinifera reference genome, which contains a rich assortment of caulimovirid EVEs that have previously been characterized using manual methods. The CAULIFINDER package is distributed in the form of a Docker image.

4.
Front Genet ; 12: 589160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841492

RESUMEN

Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6-10 my, at the origin of differential phenotypic and ecological traits. Of particular interest are the recent (19th century) hybridizations between the two hexaploids Spartina alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and the enrichment of previously published reference transcriptomes for hexaploids and the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing 21 transcribed transposable element (TE) lineages across the seven investigated Spartina species. In 4x and 6x mesopolyploids, gene and TE expression changes were consistent with phylogenetic relationships and divergence, revealing weak expression differences in the tetraploid sister species Spartina bakeri and Spartina versicolor (<2 my divergence time) compared to marked transcriptome divergence between the hexaploids S. alterniflora and S. maritima that diverged 2-4 mya. Differentially expressed genes were involved in glycolysis, post-transcriptional protein modifications, epidermis development, biosynthesis of carotenoids. Most detected TE lineages (except SINE elements) were found more expressed in hexaploids than in tetraploids, in line with their abundance in the corresponding genomes. Comparatively, an astonishing (52%) expression repatterning and deviation from parental additivity were observed following recent reticulate evolution (involving the F1 hybrids and the neo-allododecaploid S. anglica), with various patterns of biased homoeologous gene expression, including genes involved in epigenetic regulation. Downregulation of TEs was observed in both hybrids and accentuated in the neo-allopolyploid. Our results reinforce the view that allopolyploidy represents springboards to new regulatory patterns, offering to worldwide invasive species, such as S. anglica, the opportunity to colonize stressful and fluctuating environments on saltmarshes.

5.
Plant Sci ; 302: 110671, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288000

RESUMEN

Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Satélite/genética , Evolución Molecular , Poaceae/genética , Poliploidía , Southern Blotting , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA